Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
364422371291537896910 ~1999
3644320917288641839 ~1998
3644394237288788479 ~1998
364441787655995216710 ~2000
3644517237289034479 ~1998
3644544597289089199 ~1998
3644600397289200799 ~1998
3644682117289364239 ~1998
3644708397289416799 ~1998
3644796237289592479 ~1998
3644888517289777039 ~1998
3644941317289882639 ~1998
364497193218698315910 ~1999
3644981037289962079 ~1998
364498117218698870310 ~1999
3645025437290050879 ~1998
3645215517290431039 ~1998
364531873218719123910 ~1999
3645458997290917999 ~1998
3645511917291023839 ~1998
3645553437291106879 ~1998
3645582237291164479 ~1998
3645665637291331279 ~1998
3645667917291335839 ~1998
364568861218741316710 ~1999
Exponent Prime Factor Digits Year
364572473218743483910 ~1999
3645897597291795199 ~1998
3646099917292199839 ~1998
364616639291693311310 ~1999
3646416891093925067111 ~2001
364644473218786683910 ~1999
3646595517293191039 ~1998
364674677218804806310 ~1999
3646824771750475889711 ~2001
364685059875244141710 ~2001
364739861291791888910 ~1999
3647544597295089199 ~1998
3647620917295241839 ~1998
364763369291810695310 ~1999
3647830437295660879 ~1998
3647912397295824799 ~1998
36479721743775666040112 ~2005
3648131037296262079 ~1998
364818473218891083910 ~1999
3648195237296390479 ~1998
364822957218893774310 ~1999
3648343917296687839 ~1998
3648586197297172399 ~1998
3648603717297207439 ~1998
3648759117297518239 ~1998
Exponent Prime Factor Digits Year
3648857997297715999 ~1998
364902539291922031310 ~1999
3649062597298125199 ~1998
3649115517298231039 ~1998
3649163997298327999 ~1998
3649263717298527439 ~1998
364940131656892235910 ~2000
3649435917298871839 ~1998
3649454997298909999 ~1998
364952173218971303910 ~1999
3649548717299097439 ~1998
3649677237299354479 ~1998
364969757291975805710 ~1999
3649702197299404399 ~1998
3649708917299417839 ~1998
3649724517299449039 ~1998
3649764717299529439 ~1998
3649798437299596879 ~1998
3649800237299600479 ~1998
3649835517299671039 ~1998
364991533218994919910 ~1999
364991983364991983110 ~2000
3649920117299840239 ~1998
3650002132044001192911 ~2001
3650016771971009055911 ~2001
Exponent Prime Factor Digits Year
3650022717300045439 ~1998
3650189037300378079 ~1998
3650246835913399864711 ~2003
3650254437300508879 ~1998
365030657292024525710 ~1999
3650317631241107994311 ~2001
3650331597300663199 ~1998
3650383437300766879 ~1998
365056889292045511310 ~1999
365059339365059339110 ~2000
3650626197301252399 ~1998
365063813219038287910 ~1999
3650639037301278079 ~1998
365098289292078631310 ~1999
3651178437302356879 ~1998
365121413511169978310 ~2000
3651269037302538079 ~1998
3651282597302565199 ~1998
3651506895185139783911 ~2002
3651510237303020479 ~1998
3651606837303213679 ~1998
3651685797303371599 ~1998
365173961292139168910 ~1999
3651848997303697999 ~1998
3651974637303949279 ~1998
Home
5.157.210 digits
e-mail
25-11-02