Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3637140237274280479 ~1998
3637326237274652479 ~1998
363736201218241720710 ~1999
3637385691745945131311 ~2001
3637392237274784479 ~1998
363745507872989216910 ~2001
3637458597274917199 ~1998
363746701218248020710 ~1999
3637495797274991599 ~1998
3637588917275177839 ~1998
3637676891091303067111 ~2001
363772777218263666310 ~1999
3637753197275506399 ~1998
3637856997275713999 ~1998
363791017582065627310 ~2000
363794857218276914310 ~1999
3638024517276049039 ~1998
3638056197276112399 ~1998
363811181218286708710 ~1999
3638114037276228079 ~1998
3638121597276243199 ~1998
3638156637276313279 ~1998
363821657218292994310 ~1999
3638267517276535039 ~1998
3638309037276618079 ~1998
Exponent Prime Factor Digits Year
3638504571091551371111 ~2001
3638576397277152799 ~1998
3638613597277227199 ~1998
3638619237277238479 ~1998
3638633037277266079 ~1998
3638637237277274479 ~1998
3638650317277300639 ~1998
363871421291097136910 ~1999
3638724237277448479 ~1998
3638732397277464799 ~1998
363892057218335234310 ~1999
363897977291118381710 ~1999
3638997717277995439 ~1998
363901739291121391310 ~1999
3639068637278137279 ~1998
3639078717278157439 ~1998
3639092397278184799 ~1998
3639185397278370799 ~1998
363946777218368066310 ~1999
363952937291162349710 ~1999
3639564717279129439 ~1998
3639714837279429679 ~1998
3639725517279451039 ~1998
3640010037280020079 ~1998
364011749291209399310 ~1999
Exponent Prime Factor Digits Year
3640244997280489999 ~1998
3640248837280497679 ~1998
3640255491164881756911 ~2001
364031881218419128710 ~1999
364036613509651258310 ~2000
3640444917280889839 ~1998
364055641218433384710 ~1999
3640623117281246239 ~1998
3640732197281464399 ~1998
3640815837281631679 ~1998
3640879437281758879 ~1998
364090843364090843110 ~2000
364111277218466766310 ~1999
3641301117282602239 ~1998
3641309997282619999 ~1998
3641355597282711199 ~1998
3641402397282804799 ~1998
3641433597282867199 ~1998
3641513517283027039 ~1998
3641597397283194799 ~1998
364166167364166167110 ~2000
364171987364171987110 ~2000
3641876997283753999 ~1998
3641877237283754479 ~1998
3642289797284579599 ~1998
Exponent Prime Factor Digits Year
3642332037284664079 ~1998
364237243364237243110 ~2000
3642436797284873599 ~1998
364263973218558383910 ~1999
364266101218559660710 ~1999
3642708717285417439 ~1998
3642730437285460879 ~1998
364275013218565007910 ~1999
3642783117285566239 ~1998
3643056117286112239 ~1998
3643058397286116799 ~1998
3643091997286183999 ~1998
3643193397286386799 ~1998
3643298517286597039 ~1998
3643301997286603999 ~1998
364337669291470135310 ~1999
3643474197286948399 ~1998
364356253218613751910 ~1999
364369801218621880710 ~1999
3643760637287521279 ~1998
364378103947383067910 ~2001
364379051291503240910 ~1999
3644107797288215599 ~1998
3644135517288271039 ~1998
364416841218650104710 ~1999
Home
5.157.210 digits
e-mail
25-11-02