Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4175736838351473679 ~1998
4175783472756017090311 ~2002
4175942518351885039 ~1998
4176212998352425999 ~1998
417625841250575504710 ~1999
4176361011336435523311 ~2001
4176406318352812639 ~1998
4176415318352830639 ~1998
4176439918352879839 ~1998
4176480838352961679 ~1998
4176533638353067279 ~1998
4176570838353141679 ~1998
4176620998353241999 ~1998
417666719334133375310 ~2000
4176683518353367039 ~1998
417674141250604484710 ~1999
4176789838353579679 ~1998
4176795831336574665711 ~2001
4176806998353613999 ~1998
417702037250621222310 ~1999
4177021798354043599 ~1998
417702217668323547310 ~2001
4177098718354197439 ~1998
4177169518354339039 ~1998
4177177918354355839 ~1998
Exponent Prime Factor Digits Year
4177454398354908799 ~1998
4177607518355215039 ~1998
4177736518355473039 ~1998
4177884671671153868111 ~2002
4177923838355847679 ~1998
417804043417804043110 ~2000
4178062438356124879 ~1998
417810611334248488910 ~2000
4178233971253470191111 ~2001
4178264398356528799 ~1998
4178347798356695599 ~1998
417836717334269373710 ~2000
4178372534011237628911 ~2002
417845881250707528710 ~1999
4178469598356939199 ~1998
417851297250710778310 ~1999
417856861250714116710 ~1999
4178581431755004200711 ~2002
417865121334292096910 ~2000
4178680918357361839 ~1998
4178715238357430479 ~1998
417878557250727134310 ~1999
4178806798357613599 ~1998
4178879038357758079 ~1998
4178886838357773679 ~1998
Exponent Prime Factor Digits Year
4178907238357814479 ~1998
417897713250738627910 ~1999
4178984998357969999 ~1998
4179122638358245279 ~1998
4179126118358252239 ~1998
4179228598358457199 ~1998
4179230398358460799 ~1998
4179474598358949199 ~1998
4179620638359241279 ~1998
4179718198359436399 ~1998
4179743518359487039 ~1998
417984373250790623910 ~1999
417991751752385151910 ~2001
418028987334423189710 ~2000
418045057250827034310 ~1999
4180554718361109439 ~1998
418068341334454672910 ~2000
4180893838361787679 ~1998
418093547334474837710 ~2000
4180982518361965039 ~1998
4181007471087061942311 ~2001
418107337250864402310 ~1999
4181087638362175279 ~1998
4181094238362188479 ~1998
4181116931254335079111 ~2001
Exponent Prime Factor Digits Year
4181419318362838639 ~1998
4181495518362991039 ~1998
418149841669039745710 ~2001
418150171418150171110 ~2000
4181526191421718904711 ~2001
418157281250894368710 ~1999
4181636398363272799 ~1998
418166213250899727910 ~1999
4181686071003604656911 ~2001
4181869918363739839 ~1998
4181942518363885039 ~1998
4181993998363987999 ~1998
418231181250938708710 ~1999
4182399118364798239 ~1998
4182409616273614415111 ~2003
4182530638365061279 ~1998
4182671638365343279 ~1998
4182757798365515599 ~1998
4182848038365696079 ~1998
4182882598365765199 ~1998
4183061518366123039 ~1998
418306697334645357710 ~2000
418313191752963743910 ~2001
418319197250991518310 ~1999
4183284838366569679 ~1998
Home
4.903.097 digits
e-mail
25-07-08