Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
5018421833713632154311 ~2003
501869833301121899910 ~2000
501918359100383671910 ~1999
5019351973212385260911 ~2003
501939803100387960710 ~1999
501953807401563045710 ~2000
501984377301190626310 ~2000
501998723100399744710 ~1999
502003127401602501710 ~2000
502010303100402060710 ~1999
502016267401613013710 ~2000
502037051100407410310 ~1999
502055243100411048710 ~1999
502083551100416710310 ~1999
502084061301250436710 ~2000
502084397301250638310 ~2000
502085189702919264710 ~2001
502107143100421428710 ~1999
502120631100424126310 ~1999
502133279100426655910 ~1999
502138157301282894310 ~2000
502139303100427860710 ~1999
502143281401714624910 ~2000
502154519100430903910 ~1999
502178279100435655910 ~1999
Exponent Prime Factor Digits Year
502209797703093715910 ~2001
502244761301346856710 ~2000
502246937401797549710 ~2000
502255261301353156710 ~2000
502301699100460339910 ~1999
502313641301388184710 ~2000
502323863100464772710 ~1999
502324379100464875910 ~1999
502363271100472654310 ~1999
502366141301419684710 ~2000
502372567502372567110 ~2001
502377341301426404710 ~2000
502391657401913325710 ~2000
502393343100478668710 ~1999
502444451100488890310 ~1999
502453799100490759910 ~1999
502453877703435427910 ~2001
502459703100491940710 ~1999
502466171100493234310 ~1999
502467653301480591910 ~2000
502472843100494568710 ~1999
502501679100500335910 ~1999
502505957301503574310 ~2000
502508353301505011910 ~2000
5025139971909553188711 ~2002
Exponent Prime Factor Digits Year
5025246672010098668111 ~2002
502528343100505668710 ~1999
5025291792010116716111 ~2002
502529243100505848710 ~1999
502536941301522164710 ~2000
502541113301524667910 ~2000
502543667402034933710 ~2000
502545119100509023910 ~1999
502550519100510103910 ~1999
502553699100510739910 ~1999
502581479100516295910 ~1999
502585877301551526310 ~2000
502595759100519151910 ~1999
502601843100520368710 ~1999
502612391100522478310 ~1999
502624319100524863910 ~1999
502630151402104120910 ~2000
502643171100528634310 ~1999
502650371100530074310 ~1999
502682711100536542310 ~1999
502711277301626766310 ~2000
502748399100549679910 ~1999
502779161402223328910 ~2000
502780823100556164710 ~1999
502792817402234253710 ~2000
Exponent Prime Factor Digits Year
502800317402240253710 ~2000
5028053633720759686311 ~2003
502807523100561504710 ~1999
502856423100571284710 ~1999
502867451100573490310 ~1999
502880501301728300710 ~2000
502884023100576804710 ~1999
502910399100582079910 ~1999
502911973301747183910 ~2000
502913003100582600710 ~1999
502913137301747882310 ~2000
5029153391206996813711 ~2002
502920371100584074310 ~1999
502938031502938031110 ~2001
502951019100590203910 ~1999
5029601931508880579111 ~2002
502963757402371005710 ~2000
502991831100598366310 ~1999
502994819100598963910 ~1999
503010917301806550310 ~2000
503017469402413975310 ~2000
503018783100603756710 ~1999
503018801402415040910 ~2000
503030239503030239110 ~2001
503030351100606070310 ~1999
Home
4.724.182 digits
e-mail
25-04-13