Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
500728379100145675910 ~1999
500743343100148668710 ~1999
500750543100150108710 ~1999
500762191801219505710 ~2001
500765411100153082310 ~1999
500768843100153768710 ~1999
500779991100155998310 ~1999
500797019100159403910 ~1999
500816531100163306310 ~1999
500820973300492583910 ~2000
500840279400672223310 ~2000
500846737801354779310 ~2001
500853179100170635910 ~1999
500853659100170731910 ~1999
500867539500867539110 ~2001
500887979400710383310 ~2000
500888471100177694310 ~1999
5009001231202160295311 ~2002
500900723100180144710 ~1999
500921051100184210310 ~1999
500925263100185052710 ~1999
500945663100189132710 ~1999
500960219400768175310 ~2000
500970191400776152910 ~2000
500981291100196258310 ~1999
Exponent Prime Factor Digits Year
500993117400794493710 ~2000
501013391100202678310 ~1999
501049403100209880710 ~1999
501063743100212748710 ~1999
501066479100213295910 ~1999
501080351100216070310 ~1999
501084917300650950310 ~2000
501094259100218851910 ~1999
5011077131503323139111 ~2002
501111323100222264710 ~1999
501112679100222535910 ~1999
501201923100240384710 ~1999
501211979100242395910 ~1999
501236231100247246310 ~1999
501272483100254496710 ~1999
501280463100256092710 ~1999
501285899100257179910 ~1999
501292283100258456710 ~1999
501305891100261178310 ~1999
501309491100261898310 ~1999
501328991100265798310 ~1999
501334271100266854310 ~1999
501344303100268860710 ~1999
501360971100272194310 ~1999
501362417701907383910 ~2001
Exponent Prime Factor Digits Year
501364403100272880710 ~1999
501390479100278095910 ~1999
501391043100278208710 ~1999
501391571100278314310 ~1999
501394643100278928710 ~1999
501399791100279958310 ~1999
501402563100280512710 ~1999
501409511100281902310 ~1999
501430511100286102310 ~1999
501455231100291046310 ~1999
501468743100293748710 ~1999
501513203100302640710 ~1999
501514451100302890310 ~1999
5015248312407319188911 ~2002
501538601300923160710 ~2000
501563123100312624710 ~1999
501568271100313654310 ~1999
501575351100315070310 ~1999
501600299100320059910 ~1999
501606353300963811910 ~2000
501608543100321708710 ~1999
501612239100322447910 ~1999
501623459100324691910 ~1999
501632303100326460710 ~1999
501638999100327799910 ~1999
Exponent Prime Factor Digits Year
501639191100327838310 ~1999
501639569702295396710 ~2001
501657833702320966310 ~2001
501660359100332071910 ~1999
501678113301006867910 ~2000
501679631100335926310 ~1999
501696059100339211910 ~1999
501713711100342742310 ~1999
501714491100342898310 ~1999
501722393301033435910 ~2000
501736441301041864710 ~2000
501758171401406536910 ~2000
501764531100352906310 ~1999
501766931100353386310 ~1999
501775871100355174310 ~1999
501785773301071463910 ~2000
501788051100357610310 ~1999
501788411100357682310 ~1999
501789083100357816710 ~1999
501808739100361747910 ~1999
501811319100362263910 ~1999
501812039100362407910 ~1999
501814283100362856710 ~1999
501821231100364246310 ~1999
501830711100366142310 ~1999
Home
4.724.182 digits
e-mail
25-04-13