Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4009642798019285599 ~1998
4009693798019387599 ~1998
400976053240585631910 ~1999
400993781240596268710 ~1999
4009959118019918239 ~1998
400996573240597943910 ~1999
4010032318020064639 ~1998
401011469320809175310 ~2000
401023097561432335910 ~2000
401032693240619615910 ~1999
401038663401038663110 ~2000
4010517238021034479 ~1998
4010563198021126399 ~1998
4010568238021136479 ~1998
4010772238021544479 ~1998
4010830438021660879 ~1998
4010885038021770079 ~1998
4010898838021797679 ~1998
401094013240656407910 ~1999
4011008638022017279 ~1998
4011100438022200879 ~1998
401122913240673747910 ~1999
4011405838022811679 ~1998
4011578038023156079 ~1998
4011852598023705199 ~1998
Exponent Prime Factor Digits Year
401195827722152488710 ~2001
4012117198024234399 ~1998
401219053240731431910 ~1999
4012359712648157408711 ~2002
4012381798024763599 ~1998
401253977561755567910 ~2000
40127511152968314652112 ~2005
4012756318025512639 ~1998
401276873240766123910 ~1999
4013114998026229999 ~1998
4013331238026662479 ~1998
4013383318026766639 ~1998
401342857240805714310 ~1999
401358557321086845710 ~2000
4013677318027354639 ~1998
4013732398027464799 ~1998
401383847321107077710 ~2000
4013887318027774639 ~1998
401393801240836280710 ~1999
4013948398027896799 ~1998
4013969518027939039 ~1998
4014035391926736987311 ~2002
401408621321126896910 ~2000
4014267231685992236711 ~2001
401441473240864883910 ~1999
Exponent Prime Factor Digits Year
4014430198028860399 ~1998
401460701240876420710 ~1999
4014666718029333439 ~1998
4014678838029357679 ~1998
4014698398029396799 ~1998
401471773240883063910 ~1999
401486881240892128710 ~1999
4014921831686267168711 ~2001
4014942118029884239 ~1998
401509817240905890310 ~1999
4015114798030229599 ~1998
401512157240907294310 ~1999
401517121240910272710 ~1999
4015252918030505839 ~1998
4015260118030520239 ~1998
4015320118030640239 ~1998
4015462318030924639 ~1998
4015493038030986079 ~1998
4015594798031189599 ~1998
4015780318031560639 ~1998
401592677240955606310 ~1999
4015936318031872639 ~1998
4015960438031920879 ~1998
4015984198031968399 ~1998
4016093638032187279 ~1998
Exponent Prime Factor Digits Year
4016173798032347599 ~1998
4016236271365520331911 ~2001
4016309518032619039 ~1998
4016343238032686479 ~1998
401636021321308816910 ~2000
4016367238032734479 ~1998
4016459998032919999 ~1998
4016480998032961999 ~1998
4016546638033093279 ~1998
401654951321323960910 ~2000
4016769118033538239 ~1998
401685029562359040710 ~2000
4016871838033743679 ~1998
4016902798033805599 ~1998
4016994238033988479 ~1998
4017001198034002399 ~1998
401725897241035538310 ~1999
4017323398034646799 ~1998
4017473038034946079 ~1998
4017679918035359839 ~1998
401768537321414829710 ~2000
4017721318035442639 ~1998
4017729718035459439 ~1998
4017844798035689599 ~1998
4017978118035956239 ~1998
Home
4.724.182 digits
e-mail
25-04-13