Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4001445718002891439 ~1998
4001498638002997279 ~1998
400151357240090814310 ~1999
400159423400159423110 ~2000
400163033240097819910 ~1999
4001767438003534879 ~1998
4001898718003797439 ~1998
4001971131280630761711 ~2001
4001995318003990639 ~1998
4002023998004047999 ~1998
4002039718004079439 ~1998
400215047320172037710 ~2000
4002160733201728584111 ~2002
400223567720402420710 ~2001
4002298918004597839 ~1998
4002420718004841439 ~1998
4002429118004858239 ~1998
4002431998004863999 ~1998
40025570313448591620912 ~2004
4002608518005217039 ~1998
4002678118005356239 ~1998
4002719998005439999 ~1998
4002744118005488239 ~1998
4002836998005673999 ~1998
4002976198005952399 ~1998
Exponent Prime Factor Digits Year
4003045438006090879 ~1998
4003166998006333999 ~1998
400319033240191419910 ~1999
4003298518006597039 ~1998
4003406638006813279 ~1998
4003440238006880479 ~1998
4003481638006963279 ~1998
400349777240209866310 ~1999
4003534198007068399 ~1998
400377391720679303910 ~2001
4003887118007774239 ~1998
4003916398007832799 ~1998
4003947838007895679 ~1998
4003948611521500471911 ~2001
400396933240238159910 ~1999
4004325238008650479 ~1998
4004328718008657439 ~1998
4004468998008937999 ~1998
4004523598009047199 ~1998
400460713240276427910 ~1999
4004729518009459039 ~1998
4004731913203785528111 ~2002
4004824198009648399 ~1998
4005106798010213599 ~1998
4005149038010298079 ~1998
Exponent Prime Factor Digits Year
4005236038010472079 ~1998
4005313318010626639 ~1998
4005525118011050239 ~1998
400559011400559011110 ~2000
400561729961348149710 ~2001
4005711838011423679 ~1998
400572701240343620710 ~1999
400588621240353172710 ~1999
4005908638011817279 ~1998
4005971998011943999 ~1998
4006183438012366879 ~1998
400624417240374650310 ~1999
400640501320512400910 ~2000
400645529320516423310 ~2000
4006526998013053999 ~1998
4006551598013103199 ~1998
4006680838013361679 ~1998
400677337240406402310 ~1999
400679897320543917710 ~2000
4006837918013675839 ~1998
4006851118013702239 ~1998
4006913638013827279 ~1998
4006914718013829439 ~1998
4006916638013833279 ~1998
400691849320553479310 ~2000
Exponent Prime Factor Digits Year
4006985638013971279 ~1998
4007127598014255199 ~1998
4007151794568153040711 ~2002
4007217718014435439 ~1998
4007239198014478399 ~1998
4007378038014756079 ~1998
4007492038014984079 ~1998
4007649718015299439 ~1998
4007775718015551439 ~1998
4007889598015779199 ~1998
4007914318015828639 ~1998
400811819320649455310 ~2000
40084696918198452392712 ~2004
4008469918016939839 ~1998
400852817320682253710 ~2000
4008765712645785368711 ~2002
400884269561237976710 ~2000
4009047718018095439 ~1998
400905691400905691110 ~2000
4009092473207273976111 ~2002
4009100638018201279 ~1998
4009167131844216879911 ~2002
400933081240559848710 ~1999
400937309962249541710 ~2001
400949377240569626310 ~1999
Home
4.724.182 digits
e-mail
25-04-13