Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3130061396260122799 ~1997
3130330436260660879 ~1997
313043477187826086310 ~1999
3130535516261071039 ~1997
3130659716261319439 ~1997
3130706516261413039 ~1997
3130719596261439199 ~1997
3130802636261605279 ~1997
313081621187848972710 ~1999
313084181187850508710 ~1999
313085761187851456710 ~1999
313086253187851751910 ~1999
313094827751427584910 ~2000
3130990796261981599 ~1997
313115347500984555310 ~2000
3131235716262471439 ~1997
313133629751520709710 ~2000
313139873187883923910 ~1999
313144289751546293710 ~2000
313148237250518589710 ~1999
3131526116263052239 ~1997
3131623316263246639 ~1997
3131691836263383679 ~1997
3131709116263418239 ~1997
3131801516263603039 ~1997
Exponent Prime Factor Digits Year
3131813396263626799 ~1997
313190147250552117710 ~1999
3131928116263856239 ~1997
3131929916263859839 ~1997
313195933501113492910 ~2000
3132113036264226079 ~1997
3132143396264286799 ~1997
3132289316264578639 ~1997
3132371171503538161711 ~2001
3132411716264823439 ~1997
3132450116264900239 ~1997
3132478731002393193711 ~2000
3133134116266268239 ~1997
3133197116266394239 ~1997
3133255316266510639 ~1997
313340021250672016910 ~1999
313340057250672045710 ~1999
3133433516266867039 ~1997
3133434236266868479 ~1997
3133642316267284639 ~1997
313364531250691624910 ~1999
3133689596267379199 ~1997
3133732436267464879 ~1997
313388351250710680910 ~1999
313389029438744640710 ~1999
Exponent Prime Factor Digits Year
3133953596267907199 ~1997
3134160236268320479 ~1997
3134182796268365599 ~1997
313440377188064226310 ~1999
3134505236269010479 ~1997
3134527196269054399 ~1997
313458757188075254310 ~1999
3134628231567314115111 ~2001
3134649716269299439 ~1997
313477117501563387310 ~2000
3134776916269553839 ~1997
3134808596269617199 ~1997
3134926436269852879 ~1997
3134936996269873999 ~1997
313507169250805735310 ~1999
313510193188106115910 ~1999
3135102836270205679 ~1997
3135115316270230639 ~1997
3135255596270511199 ~1997
3135268316270536639 ~1997
3135332996270665999 ~1997
3135433196270866399 ~1997
313543507313543507110 ~1999
3135606716271213439 ~1997
3135622796271245599 ~1997
Exponent Prime Factor Digits Year
313578401188147040710 ~1999
3135896036271792079 ~1997
313591099313591099110 ~1999
313622971313622971110 ~1999
3136288796272577599 ~1997
3136350116272700239 ~1997
3136423316272846639 ~1997
313642397250913917710 ~1999
3136589036273178079 ~1997
3136696196273392399 ~1997
3136832396273664799 ~1997
313684771313684771110 ~1999
3136862516273725039 ~1997
3136925636273851279 ~1997
313697981250958384910 ~1999
3137020436274040879 ~1997
3137067596274135199 ~1997
3137070195583984938311 ~2002
3137373236274746479 ~1997
313750117188250070310 ~1999
3137532596275065199 ~1997
3137536796275073599 ~1997
3137641796275283599 ~1997
3137725796275451599 ~1997
313778119313778119110 ~1999
Home
4.724.182 digits
e-mail
25-04-13