Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2995058515990117039 ~1997
2995069795990139599 ~1997
2995269715990539439 ~1997
2995273315990546639 ~1997
2995274635990549279 ~1997
2995324195990648399 ~1997
299535073179721043910 ~1998
2995389733055297524711 ~2001
299544281239635424910 ~1999
2995502995991005999 ~1997
2995631635991263279 ~1997
2995721515991443039 ~1997
2995785235991570479 ~1997
2995812835991625679 ~1997
2995909435991818879 ~1997
2995925395991850799 ~1997
299598457479357531310 ~1999
299605721239684576910 ~1999
2996078713175843432711 ~2001
299608487239686789710 ~1999
299616089239692871310 ~1999
2996204635992409279 ~1997
2996321395992642799 ~1997
299633309239706647310 ~1999
2996481612157466759311 ~2001
Exponent Prime Factor Digits Year
299651167299651167110 ~1999
2996562115993124239 ~1997
299665423299665423110 ~1999
2996806915993613839 ~1997
2997020035994040079 ~1997
2997073795994147599 ~1997
2997121315994242639 ~1997
2997125035994250079 ~1997
2997128635994257279 ~1997
2997153595994307199 ~1997
2997156595994313199 ~1997
2997275035994550079 ~1997
299733211479573137710 ~1999
299733877179840326310 ~1998
2997356035994712079 ~1997
299736329239789063310 ~1999
299753459239802767310 ~1999
2997596395995192799 ~1997
299772877719454904910 ~2000
2997768115995536239 ~1997
299786657179871994310 ~1998
299794193419711870310 ~1999
2998116235996232479 ~1997
2998122835996245679 ~1997
2998179235996358479 ~1997
Exponent Prime Factor Digits Year
2998229035996458079 ~1997
299835127299835127110 ~1999
2998456915996913839 ~1997
2998466395996932799 ~1997
2998470135217338026311 ~2002
2998502515997005039 ~1997
2998645315997290639 ~1997
299870371299870371110 ~1999
2998741195997482399 ~1997
299891399239913119310 ~1999
299896901179938140710 ~1998
299904287239923429710 ~1999
299917141179950284710 ~1998
2999182315998364639 ~1997
299920099299920099110 ~1999
2999237515998475039 ~1997
2999251795998503599 ~1997
2999326315998652639 ~1997
2999337595998675199 ~1997
299934653179960791910 ~1998
299939791539891623910 ~2000
2999535235999070479 ~1997
2999555635999111279 ~1997
299956231299956231110 ~1999
2999635195999270399 ~1997
Exponent Prime Factor Digits Year
2999699635999399279 ~1997
2999715471499857735111 ~2001
2999827795999655599 ~1997
2999853595999707199 ~1997
299995723299995723110 ~1999
2999987395999974799 ~1997
300001181240000944910 ~1999
3000013196000026399 ~1997
3000118196000236399 ~1997
300021881180013128710 ~1998
3000317996000635999 ~1997
30003823913501720755112 ~2003
3000563636001127279 ~1997
3000652196001304399 ~1997
3000785636001571279 ~1997
300078901180047340710 ~1998
3000816191440391771311 ~2001
3000836396001672799 ~1997
3000864116001728239 ~1997
3000898796001797599 ~1997
3001087796002175599 ~1997
300121421240097136910 ~1999
3001543316003086639 ~1997
3001849316003698639 ~1997
3001859996003719999 ~1997
Home
4.739.325 digits
e-mail
25-04-20