Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2923498915846997839 ~1997
2923565635847131279 ~1997
292392011233913608910 ~1999
2923921435847842879 ~1997
2923921795847843599 ~1997
2924074435848148879 ~1997
2924197195848394399 ~1997
2924214835848429679 ~1997
2924431435848862879 ~1997
2924465515848931039 ~1997
292460507233968405710 ~1999
2924773795849547599 ~1997
2924823835849647679 ~1997
2924852995849705999 ~1997
2924979835849959679 ~1997
292516333175509799910 ~1998
292517341175510404710 ~1998
2925281395850562799 ~1997
2925401035850802079 ~1997
2925402715850805439 ~1997
292542113175525267910 ~1998
2925611635851223279 ~1997
2925618835851237679 ~1997
2925777115851554239 ~1997
292595707702229696910 ~2000
Exponent Prime Factor Digits Year
292601321175560792710 ~1998
2926034035852068079 ~1997
292609001175565400710 ~1998
2926096315852192639 ~1997
292613729409659220710 ~1999
2926208035852416079 ~1997
2926370035852740079 ~1997
2926379112399630870311 ~2001
2926687915853375839 ~1997
2926725115853450239 ~1997
2926868515853737039 ~1997
292716577175629946310 ~1998
2927272195854544399 ~1997
292735277234188221710 ~1999
2927357395854714799 ~1997
2927546995855093999 ~1997
2927741515855483039 ~1997
2927762995855525999 ~1997
2927784595855569199 ~1997
2927806435855612879 ~1997
2927812435855624879 ~1997
2927850715855701439 ~1997
2928030115856060239 ~1997
292804597468487355310 ~1999
2928211435856422879 ~1997
Exponent Prime Factor Digits Year
292826953175696171910 ~1998
2928361195856722399 ~1997
2928379915856759839 ~1997
292845481175707288710 ~1998
2928480715856961439 ~1997
2928495235856990479 ~1997
2928577915857155839 ~1997
292864553175718731910 ~1998
2928739795857479599 ~1997
292890677175734406310 ~1998
2928908035857816079 ~1997
2928928195857856399 ~1997
292899731234319784910 ~1999
2929103635858207279 ~1997
292910393175746235910 ~1998
2929452235858904479 ~1997
2929473115858946239 ~1997
292961579527330842310 ~1999
2929639915859279839 ~1997
2929656715859313439 ~1997
2929685515859371039 ~1997
2929898635859797279 ~1997
292993769234395015310 ~1999
292999013703197631310 ~2000
292999937175799962310 ~1998
Exponent Prime Factor Digits Year
29301693134458791085712 ~2004
2930169595860339199 ~1997
293043677175826206310 ~1998
293048927234439141710 ~1999
293049607527489292710 ~1999
293063711234450968910 ~1999
2930656315861312639 ~1997
2930796595861593199 ~1997
2930862595861725199 ~1997
2931010795862021599 ~1997
2931190195862380399 ~1997
293125097175875058310 ~1998
2931252235862504479 ~1997
293128267469005227310 ~1999
293133173938026153710 ~2000
2931510115863020239 ~1997
2931529915863059839 ~1997
2931610071407172833711 ~2000
2931669835863339679 ~1997
2931723715863447439 ~1997
2931724435863448879 ~1997
293174839527714710310 ~1999
2931808315863616639 ~1997
293181737175909042310 ~1998
2931888235863776479 ~1997
Home
4.739.325 digits
e-mail
25-04-20