Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
168873721101324232710 ~1996
168879701135103760910 ~1997
1688805833377611679 ~1995
168885181101331108710 ~1996
1688896913377793839 ~1995
168890837641785180710 ~1998
1688917433377834879 ~1995
168895193101337115910 ~1996
168895673101337403910 ~1996
1689061313378122639 ~1995
1689081233378162479 ~1995
168916841135133472910 ~1997
1689221993378443999 ~1995
168922357270275771310 ~1997
1689258593378517199 ~1995
168926993236497790310 ~1997
1689295913378591839 ~1995
1689319793378639599 ~1995
1689332033378664079 ~1995
168936739168936739110 ~1997
1689375113378750239 ~1995
168938711135150968910 ~1997
1689397913378795839 ~1995
168940687168940687110 ~1997
1689534833379069679 ~1995
Exponent Prime Factor Digits Year
1689582593379165199 ~1995
1689591233379182479 ~1995
1689674393379348799 ~1995
1689723113379446239 ~1995
1689739913379479839 ~1995
168979373101387623910 ~1996
168986333101391799910 ~1996
1689871793379743599 ~1995
168992419168992419110 ~1997
1689960713379921439 ~1995
1689962513379925039 ~1995
1690021913380043839 ~1995
169006213101403727910 ~1996
1690090793380181599 ~1995
1690143833380287679 ~1995
1690170113380340239 ~1995
1690204332400090148711 ~2000
1690236113380472239 ~1995
1690236233380472479 ~1995
1690243793380487599 ~1995
1690292993380585999 ~1995
1690309193380618399 ~1995
1690319633380639279 ~1995
1690368593380737199 ~1995
1690369193380738399 ~1995
Exponent Prime Factor Digits Year
1690389113380778239 ~1995
169040437101424262310 ~1996
169050647135240517710 ~1997
169051453101430871910 ~1996
1690621433381242879 ~1995
1690627913381255839 ~1995
1690690793381381599 ~1995
169073501101444100710 ~1996
169073501135258800910
1690763993381527999 ~1995
1690863113381726239 ~1995
1690865633381731279 ~1995
169090079405816189710 ~1998
1690910993381821999 ~1995
1690928513381857039 ~1995
1690960793381921599 ~1995
1690961993381923999 ~1995
169096231169096231110 ~1997
1690987313381974639 ~1995
169099157135279325710 ~1997
1690993632435030827311 ~2000
169102607135282085710 ~1997
1691059913382119839 ~1995
169111717101467030310 ~1996
1691145593382291199 ~1995
Exponent Prime Factor Digits Year
1691150033382300079 ~1995
169125161101475096710 ~1996
1691255633382511279 ~1995
1691296193382592399 ~1995
169138157101482894310 ~1996
1691419913382839839 ~1995
169144301101486580710 ~1996
169148747439786742310 ~1998
1691522513383045039 ~1995
169153813101492287910 ~1996
169159709236823592710 ~1997
1691608913383217839 ~1995
1691710913383421839 ~1995
1691716433383432879 ~1995
1691785193383570399 ~1995
1691852393383704799 ~1995
1691858393383716799 ~1995
1691863313383726639 ~1995
169186837507560511110 ~1998
169190353101514211910 ~1996
169190909406058181710 ~1998
1691912513383825039 ~1995
169191353101514811910 ~1996
1691926433383852879 ~1995
1692070793384141599 ~1995
Home
5.157.210 digits
e-mail
25-11-02