Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1838796233677592479 ~1996
1838815433677630879 ~1996
1838822993677645999 ~1996
1838835713677671439 ~1996
1838857913677715839 ~1996
1838969633677939279 ~1996
183900553845942543910 ~1999
1839030292905667858311 ~2000
1839050633678101279 ~1996
183909331772419190310 ~1999
1839104393678208799 ~1996
183912193110347315910 ~1997
183916771183916771110 ~1997
1839205193678410399 ~1996
1839223913678447839 ~1996
183927859331070146310 ~1998
1839279831029996704911 ~1999
1839329993678659999 ~1996
18394364910300844344112 ~2002
1839462113678924239 ~1996
1839498233678996479 ~1996
1839517313679034639 ~1996
183957041110374224710 ~1997
1839578033679156079 ~1996
1839595193679190399 ~1996
Exponent Prime Factor Digits Year
1839596633679193279 ~1996
1839660113679320239 ~1996
1839674993679349999 ~1996
1839765113679530239 ~1996
1839770633679541279 ~1996
1839801833679603679 ~1996
1839803393679606799 ~1996
1839818393679636799 ~1996
183983837110390302310 ~1997
1839878513679757039 ~1996
1839909593679819199 ~1996
1839990713679981439 ~1996
1840055393680110799 ~1996
184013231147210584910 ~1997
1840158233680316479 ~1996
1840180313680360639 ~1996
1840189793680379599 ~1996
1840196633680393279 ~1996
1840288433680576879 ~1996
1840347593680695199 ~1996
1840383593680767199 ~1996
1840408913680817839 ~1996
184045781110427468710 ~1997
1840497113680994239 ~1996
1840530713681061439 ~1996
Exponent Prime Factor Digits Year
1840545833681091679 ~1996
1840549913681099839 ~1996
1840588793681177599 ~1996
1840661393681322799 ~1996
1840770593681541199 ~1996
184084037110450422310 ~1997
1840869713681739439 ~1996
1840891313681782639 ~1996
1840901033681802079 ~1996
184094033110456419910 ~1997
184094837147275869710 ~1997
184099373110459623910 ~1997
184100897147280717710 ~1997
1841015033682030079 ~1996
184101893257742650310 ~1998
1841079233682158479 ~1996
1841100113682200239 ~1996
184111157257755619910 ~1998
1841119433682238879 ~1996
1841140193682280399 ~1996
184116811184116811110 ~1997
1841226113682452239 ~1996
1841233913682467839 ~1996
1841245193682490399 ~1996
1841301833682603679 ~1996
Exponent Prime Factor Digits Year
1841321393682642799 ~1996
1841344793682689599 ~1996
1841371193682742399 ~1996
1841376713682753439 ~1996
1841387393682774799 ~1996
184140353110484211910 ~1997
1841415713682831439 ~1996
1841437313682874639 ~1996
1841463593682927199 ~1996
1841497433682994879 ~1996
18415273935210003696912 ~2003
184157429147325943310 ~1997
184159291331486723910 ~1998
1841610833683221679 ~1996
1841617793683235599 ~1996
184162457110497474310 ~1997
1841641433683282879 ~1996
1841697593683395199 ~1996
1841751113683502239 ~1996
1841793113683586239 ~1996
1841807513683615039 ~1996
1841823593683647199 ~1996
184187581294700129710 ~1998
1841925113683850239 ~1996
1841925233683850479 ~1996
Home
5.157.210 digits
e-mail
25-11-02