Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
185769851148615880910 ~1997
185781857111469114310 ~1997
1857832193715664399 ~1996
1858066092192517986311 ~2000
1858082513716165039 ~1996
1858126193716252399 ~1996
1858227233716454479 ~1996
185826869148661495310 ~1997
1858293233716586479 ~1996
1858323233716646479 ~1996
1858348433716696879 ~1996
1858400513716801039 ~1996
1858406633716813279 ~1996
1858428593716857199 ~1996
185844661557533983110 ~1998
185844917111506950310 ~1997
185857207185857207110 ~1997
1858595993717191999 ~1996
1858614113717228239 ~1996
1858615193717230399 ~1996
1858633193717266399 ~1996
185864123594765193710 ~1999
1858662113717324239 ~1996
1858736513717473039 ~1996
1858762313717524639 ~1996
Exponent Prime Factor Digits Year
185876851185876851110 ~1997
185883437148706749710 ~1997
185891197111534718310 ~1997
185891333111534799910 ~1997
1858919393717838799 ~1996
185893157557679471110 ~1998
1858945913717891839 ~1996
1858995593717991199 ~1996
185908003185908003110 ~1997
1859156513718313039 ~1996
1859171291338603328911 ~1999
1859171393718342799 ~1996
1859197913718395839 ~1996
185920727446209744910 ~1998
185925239148740191310 ~1997
1859270993718541999 ~1996
1859328113718656239 ~1996
1859375393718750799 ~1996
185941837111565102310 ~1997
185943001855337804710 ~1999
1859465993718931999 ~1996
1859470313718940639 ~1996
185947631148758104910 ~1997
1859603033719206079 ~1996
1859685113719370239 ~1996
Exponent Prime Factor Digits Year
1859698793719397599 ~1996
185973629148778903310 ~1997
1859754113719508239 ~1996
1859791193719582399 ~1996
185990507148792405710 ~1997
185995813111597487910 ~1997
1859996033719992079 ~1996
1860161993720323999 ~1996
1860265913720531839 ~1996
1860299231971917183911 ~2000
186037693297660308910 ~1998
1860377633720755279 ~1996
1860385433720770879 ~1996
1860450713720901439 ~1996
1860527993721055999 ~1996
1860587033721174079 ~1996
1860599633721199279 ~1996
186062581111637548710 ~1997
186067927334922268710 ~1998
186070421148856336910 ~1997
1860714713721429439 ~1996
1860751433721502879 ~1996
186080071334944127910 ~1998
1860801233721602479 ~1996
1860830633721661279 ~1996
Exponent Prime Factor Digits Year
1860847193721694399 ~1996
1860892193721784399 ~1996
1860896393721792799 ~1996
1860933113721866239 ~1996
1861039193722078399 ~1996
1861138913722277839 ~1996
186114727335006508710 ~1998
1861216793722433599 ~1996
1861219793722439599 ~1996
186123461111674076710 ~1997
1861423313722846639 ~1996
1861427513722855039 ~1996
186147163186147163110 ~1997
186147347148917877710 ~1997
1861512713723025439 ~1996
1861653833723307679 ~1996
1861701233723402479 ~1996
186175657111705394310 ~1997
1861773113723546239 ~1996
186181157148944925710 ~1997
186182279148945823310 ~1997
1861895513723791039 ~1996
1862002193724004399 ~1996
1862055833724111679 ~1996
1862065913724131839 ~1996
Home
4.903.097 digits
e-mail
25-07-08