Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1851231113702462239 ~1996
1851257513702515039 ~1996
185138333259193666310 ~1998
185139011148111208910 ~1997
1851423713702847439 ~1996
1851442313702884639 ~1996
185147099777617815910 ~1999
1851541433703082879 ~1996
185159213259222898310 ~1998
1851619793703239599 ~1996
185163427296261483310 ~1998
185168429148134743310 ~1997
185169007629574623910 ~1999
185174263185174263110 ~1997
185176777296282843310 ~1998
1851807713703615439 ~1996
185183077111109846310 ~1997
185183351148146680910 ~1997
1851836111962946276711 ~2000
1851848033703696079 ~1996
1851848993703697999 ~1996
1851892433703784879 ~1996
1851911513703823039 ~1996
185193737148154989710 ~1997
185194811777818206310 ~1999
Exponent Prime Factor Digits Year
185199701148159760910 ~1997
1852013633704027279 ~1996
1852044713704089439 ~1996
1852109393704218799 ~1996
185214877296343803310 ~1998
1852172993704345999 ~1996
1852176113704352239 ~1996
1852181513704363039 ~1996
1852202513704405039 ~1996
185220601111132360710 ~1997
1852293113704586239 ~1996
1852299113704598239 ~1996
185231821111139092710 ~1997
185233577111140146310 ~1997
185238667185238667110 ~1997
1852394513704789039 ~1996
1852396793704793599 ~1996
1852403393704806799 ~1996
1852405793704811599 ~1996
185248907333448032710 ~1998
185250553111150331910 ~1997
185251013111150607910 ~1997
185251519185251519110 ~1997
1852647713705295439 ~1996
1852746233705492479 ~1996
Exponent Prime Factor Digits Year
1852799771185791852911 ~1999
1852801313705602639 ~1996
185280233111168139910 ~1997
185283997741135988110 ~1999
185287853111172711910 ~1997
185288099148230479310 ~1997
1852909913705819839 ~1996
1852921193705842399 ~1996
185292431333526375910 ~1998
1852925393705850799 ~1996
1853023193706046399 ~1996
185302709148242167310 ~1997
1853050793706101599 ~1996
185315561148252448910 ~1997
1853188913706377839 ~1996
185321527296514443310 ~1998
1853388233706776479 ~1996
1853402513706805039 ~1996
1853531393707062799 ~1996
1853549513707099039 ~1996
185357743185357743110 ~1997
1853597033707194079 ~1996
1853664593707329199 ~1996
1853849393707698799 ~1996
1853888033707776079 ~1996
Exponent Prime Factor Digits Year
185389051778634014310 ~1999
1853994713707989439 ~1996
185402521111241512710 ~1997
185415007333747012710 ~1998
185416339333749410310 ~1998
185421727185421727110 ~1997
185427779148342223310 ~1997
185434331148347464910 ~1997
185434477111260686310 ~1997
185438327148350661710 ~1997
1854469793708939599 ~1996
1854473033708946079 ~1996
1854477113708954239 ~1996
185449219185449219110 ~1997
1854497393708994799 ~1996
1854506633709013279 ~1996
1854529193709058399 ~1996
1854529313709058639 ~1996
1854568193709136399 ~1996
185459507148367605710 ~1997
1854617513709235039 ~1996
1854677033709354079 ~1996
185469871185469871110 ~1997
1854801593709603199 ~1996
1854814793709629599 ~1996
Home
4.903.097 digits
e-mail
25-07-08