Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
182705059182705059110 ~1997
182707027438496864910 ~1998
1827092033654184079 ~1996
1827102593654205199 ~1996
182712377255797327910 ~1998
182717827292348523310 ~1998
182718121109630872710 ~1997
1827206513654413039 ~1996
1827216113654432239 ~1996
1827222833654445679 ~1996
1827226793654453599 ~1996
1827260393654520799 ~1996
1827262313654524639 ~1996
1827291713654583439 ~1996
1827312593654625199 ~1996
1827346793654693599 ~1996
1827347633654695279 ~1996
182736019182736019110 ~1997
182741137292385819310 ~1998
1827456593654913199 ~1996
182746633109647979910 ~1997
1827468713654937439 ~1996
182751083584803465710 ~1998
1827522593655045199 ~1996
1827544193655088399 ~1996
Exponent Prime Factor Digits Year
1827600233655200479 ~1996
182760827146208661710 ~1997
1827638513655277039 ~1996
1827786713655573439 ~1996
182783717146226973710 ~1997
1827853913655707839 ~1996
1827871313655742639 ~1996
182790571292464913710 ~1998
1827999833655999679 ~1996
1828112633656225279 ~1996
1828113592230298579911 ~2000
1828123793656247599 ~1996
182813537109688122310 ~1997
1828148393656296799 ~1996
1828178633656357279 ~1996
1828226633656453279 ~1996
1828247033656494079 ~1996
1828274393656548799 ~1996
182829877109697926310 ~1997
1828314833656629679 ~1996
1828326593656653199 ~1996
1828343633656687279 ~1996
182837009146269607310 ~1997
1828382033656764079 ~1996
1828390433656780879 ~1996
Exponent Prime Factor Digits Year
1828423433656846879 ~1996
1828442513656885039 ~1996
182844463292551140910 ~1998
1828459793656919599 ~1996
182847737146278189710 ~1997
1828481633656963279 ~1996
1828484393656968799 ~1996
182849903914249515110 ~1999
182855429255997600710 ~1998
1828575233657150479 ~1996
182858041292572865710 ~1998
182862077109717246310 ~1997
182867101109720260710 ~1997
1828736571462989256111 ~1999
182886859329196346310 ~1998
1828873193657746399 ~1996
182900561695022131910 ~1999
1829006993658013999 ~1996
1829034113658068239 ~1996
1829049713658099439 ~1996
182905433109743259910 ~1997
1829092313658184639 ~1996
182911037146328829710 ~1997
1829120393658240799 ~1996
1829132392524202698311 ~2000
Exponent Prime Factor Digits Year
1829181593658363199 ~1996
1829225393658450799 ~1996
182926901146341520910 ~1997
1829293913658587839 ~1996
1829299913658599839 ~1996
1829348033658696079 ~1996
1829360033658720079 ~1996
182936101109761660710 ~1997
182939833109763899910 ~1997
1829417993658835999 ~1996
1829460833658921679 ~1996
1829462513658925039 ~1996
1829561993659123999 ~1996
1829573633659147279 ~1996
1829573993659147999 ~1996
1829583713659167439 ~1996
1829634113659268239 ~1996
182965243182965243110 ~1997
1829682113659364239 ~1996
182970397292752635310 ~1998
1829713193659426399 ~1996
182973199439135677710 ~1998
1829744393659488799 ~1996
182983387182983387110 ~1997
1829877713659755439 ~1996
Home
4.918.085 digits
e-mail
25-07-13