Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1941928793883857599 ~1996
1941988433883976879 ~1996
1941993713883987439 ~1996
194199781116519868710 ~1997
1942008233884016479 ~1996
1942085691048726272711 ~1999
1942119713884239439 ~1996
194218933116531359910 ~1997
194221691349599043910 ~1998
1942227113884454239 ~1996
1942279913884559839 ~1996
1942285793884571599 ~1996
1942287113884574239 ~1996
1942370033884740079 ~1996
1942427033884854079 ~1996
1942547993885095999 ~1996
1942573313885146639 ~1996
1942594193885188399 ~1996
194261477116556886310 ~1997
1942616633885233279 ~1996
1942655633885311279 ~1996
194267987155414389710 ~1997
1942766393885532799 ~1996
1942822793885645599 ~1996
194282533116569519910 ~1997
Exponent Prime Factor Digits Year
194283941116570364710 ~1997
1942867913885735839 ~1996
194297633116578579910 ~1997
1943011793886023599 ~1996
1943023433886046879 ~1996
194303413116582047910 ~1997
1943045033886090079 ~1996
1943057633886115279 ~1996
1943075633886151279 ~1996
1943077193886154399 ~1996
1943187593886375199 ~1996
194319751194319751110 ~1997
1943219993886439999 ~1996
1943282033886564079 ~1996
1943330993886661999 ~1996
194343341155474672910 ~1997
1943443433886886879 ~1996
194345807505299098310 ~1998
1943684393887368799 ~1996
194370973116622583910 ~1997
194394043311030468910 ~1998
194396357155517085710 ~1997
1943974913887949839 ~1996
1944110513888221039 ~1996
1944122331049826058311 ~1999
Exponent Prime Factor Digits Year
194415037116649022310 ~1997
1944168233888336479 ~1996
194426833116656099910 ~1997
1944306113888612239 ~1996
1944349313888698639 ~1996
1944464633888929279 ~1996
1944476993888953999 ~1996
194448313116668987910 ~1997
194453953466689487310 ~1998
194460223466704535310 ~1998
1944617633889235279 ~1996
1944641633889283279 ~1996
194466761116680056710 ~1997
194472301116683380710 ~1997
1944778313889556639 ~1996
1944786713889573439 ~1996
1944881393889762799 ~1996
1944931793889863599 ~1996
1944968393889936799 ~1996
1945009913890019839 ~1996
1945049033890098079 ~1996
1945053233890106479 ~1996
194507281116704368710 ~1997
1945139993890279999 ~1996
1945149593890299199 ~1996
Exponent Prime Factor Digits Year
1945172993890345999 ~1996
194521007155616805710 ~1997
1945225433890450879 ~1996
1945301633890603279 ~1996
1945420793890841599 ~1996
1945421513890843039 ~1996
194547253116728351910 ~1997
194549239194549239110 ~1997
194549317583647951110 ~1999
1945561513268543336911 ~2000
1945591913891183839 ~1996
1945614593891229199 ~1996
194565127350217228710 ~1998
194573101116743860710 ~1997
194579921116747952710 ~1997
1945868513891737039 ~1996
194588417155670733710 ~1997
194591659194591659110 ~1997
1945952393891904799 ~1996
194595509155676407310 ~1997
1945988513891977039 ~1996
1946033513892067039 ~1996
1946057513892115039 ~1996
1946128433892256879 ~1996
1946129033892258079 ~1996
Home
4.739.325 digits
e-mail
25-04-20