Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
193423697116054218310 ~1997
193426903193426903110 ~1997
1934297513868595039 ~1996
1934306513868613039 ~1996
193437709464250501710 ~1998
1934386913868773839 ~1996
1934420033868840079 ~1996
1934507393869014799 ~1996
1934597513869195039 ~1996
1934634233869268479 ~1996
1934651993869303999 ~1996
1934854433869708879 ~1996
193486697464368072910 ~1998
1934887313869774639 ~1996
193491107154792885710 ~1997
1934923913869847839 ~1996
1934955593869911199 ~1996
1934998793869997599 ~1996
193505383193505383110 ~1997
193507469154805975310 ~1997
1935081233870162479 ~1996
1935125513870251039 ~1996
193516567193516567110 ~1997
1935217913870435839 ~1996
193523611348342499910 ~1998
Exponent Prime Factor Digits Year
1935255233870510479 ~1996
19352803319623742546312 ~2002
1935281033870562079 ~1996
193528481116117088710 ~1997
1935374513870749039 ~1996
1935380633870761279 ~1996
193546589154837271310 ~1997
1935486713870973439 ~1996
1935551633871103279 ~1996
1935552833871105679 ~1996
1935592313871184639 ~1996
1935709913871419839 ~1996
1935716633871433279 ~1996
1935723833871447679 ~1996
193573687193573687110 ~1997
193573999193573999110 ~1997
1935764513871529039 ~1996
1935874313871748639 ~1996
193589843619487497710 ~1999
1935948113871896239 ~1996
1936029231277779291911 ~1999
1936030313872060639 ~1996
1936037033872074079 ~1996
193604161116162496710 ~1997
193606513116163907910 ~1997
Exponent Prime Factor Digits Year
1936086593872173199 ~1996
1936102433872204879 ~1996
193612061116167236710 ~1997
193612141116167284710 ~1997
1936121513872243039 ~1996
193615999193615999110 ~1997
193617317116170390310 ~1997
1936175513872351039 ~1996
1936177193872354399 ~1996
193621577116172946310 ~1997
1936229633872459279 ~1996
193623103309796964910 ~1998
193631369271083916710 ~1998
193631371348536467910 ~1998
1936368233872736479 ~1996
1936425113872850239 ~1996
1936468193872936399 ~1996
1936509113873018239 ~1996
1936514993873029999 ~1996
1936518833873037679 ~1996
1936519433873038879 ~1996
1936551833873103679 ~1996
1936579913873159839 ~1996
1936622633873245279 ~1996
1936660193873320399 ~1996
Exponent Prime Factor Digits Year
1936682393873364799 ~1996
193669481154935584910 ~1997
193670657116202394310 ~1997
1936754393873508799 ~1996
1936806593873613199 ~1996
1936931513873863039 ~1996
1936952513873905039 ~1996
1936958393873916799 ~1996
1936960433873920879 ~1996
1937027033874054079 ~1996
193705481116223288710 ~1997
1937062313874124639 ~1996
1937086313874172639 ~1996
1937104313874208639 ~1996
1937120633874241279 ~1996
1937124113874248239 ~1996
1937173793874347599 ~1996
1937217713874435439 ~1996
1937279393874558799 ~1996
1937428313874856639 ~1996
193756931348762475910 ~1998
1937577833875155679 ~1996
1937587913875175839 ~1996
1937650793875301599 ~1996
1937662913875325839 ~1996
Home
4.739.325 digits
e-mail
25-04-20