Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
180754793578415337710 ~1998
1807594433615188879 ~1995
1807606313615212639 ~1995
1807616993615233999 ~1995
1807638113615276239 ~1995
1807658033615316079 ~1995
1807672433615344879 ~1995
180771971144617576910 ~1997
180781639180781639110 ~1997
1807875593615751199 ~1995
1807920713615841439 ~1995
180800647723202588110 ~1999
180807661108484596710 ~1997
180810139325458250310 ~1998
180813613433952671310 ~1998
180829637108497782310 ~1997
1808340113616680239 ~1995
1808433593616867199 ~1995
180853537108512122310 ~1997
1808542913617085839 ~1995
180860777253205087910 ~1998
180862867180862867110 ~1997
1808654033617308079 ~1995
1808658713617317439 ~1995
180867173108520303910 ~1997
Exponent Prime Factor Digits Year
1808690633617381279 ~1995
1808698793617397599 ~1995
1808761193617522399 ~1995
1808769593617539199 ~1995
1808812313617624639 ~1995
1808838233617676479 ~1995
1808853113617706239 ~1995
180886781144709424910 ~1997
180891149144712919310 ~1997
1808923193617846399 ~1995
1808944913617889839 ~1995
1808967833617935679 ~1995
180899107289438571310 ~1998
1809051113618102239 ~1995
1809121913618243839 ~1995
1809142913618285839 ~1995
180918121289468993710 ~1998
1809206993618413999 ~1995
180922433108553459910 ~1997
1809224993618449999 ~1995
1809282113618564239 ~1995
180932417144745933710 ~1997
180939433108563659910 ~1997
1809506033619012079 ~1995
1809510593619021199 ~1995
Exponent Prime Factor Digits Year
1809600833365857543911 ~2000
1809669113619338239 ~1995
1809672113619344239 ~1995
180968617108581170310 ~1997
1809694432063051650311 ~2000
180972677144778141710 ~1997
1809755633619511279 ~1995
180977231144781784910 ~1997
1809909233619818479 ~1995
1809972593619945199 ~1995
1809983993619967999 ~1995
1810016033620032079 ~1995
1810036313620072639 ~1995
1810058993620117999 ~1995
181011893108607135910 ~1997
1810133633620267279 ~1995
1810161233620322479 ~1995
181017961108610776710 ~1997
1810246313620492639 ~1995
181027993108616795910 ~1997
1810330913620661839 ~1995
181033939760342543910 ~1999
181036577144829261710 ~1997
181037767325867980710 ~1998
181042481108625488710 ~1997
Exponent Prime Factor Digits Year
1810435433620870879 ~1995
1810501793621003599 ~1995
1810529393621058799 ~1995
1810552433621104879 ~1995
181061597253486235910 ~1998
181065917253492283910 ~1998
1810676513621353039 ~1995
1810704233621408479 ~1995
1810773113621546239 ~1995
181077979869174299310 ~1999
1810787393621574799 ~1995
1810825793621651599 ~1995
1810838633621677279 ~1995
181086443579476617710 ~1998
181094477108656686310 ~1997
1810981433621962879 ~1995
1811005935179476959911 ~2001
181104491144883592910 ~1997
1811087513622175039 ~1995
1811089433622178879 ~1995
1811155793622311599 ~1995
1811160593622321199 ~1995
181117877144894301710 ~1997
181118081108670848710 ~1997
1811215433622430879 ~1995
Home
4.739.325 digits
e-mail
25-04-20