Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1398141832796283679 ~1995
1398146178388877039 ~1996
1398149032796298079 ~1995
139817803139817803110 ~1996
1398250338389501999 ~1996
1398304192796608399 ~1995
1398320512796641039 ~1995
1398341992796683999 ~1995
139834381223735009710 ~1997
1398357712796715439 ~1995
1398360232796720479 ~1995
1398393832796787679 ~1995
1398404512796809039 ~1995
139842557111874045710 ~1996
139849219251728594310 ~1997
1398518392797036799 ~1995
1398620032797240079 ~1995
1398665338391991999 ~1996
1398700192797400399 ~1995
139870187111896149710 ~1996
139875959335702301710 ~1997
1398838192797676399 ~1995
1398877192797754399 ~1995
1398885592797771199 ~1995
1398945712797891439 ~1995
Exponent Prime Factor Digits Year
1399007512798015039 ~1995
139903877195865427910 ~1997
1399053178394319039 ~1996
1399074832798149679 ~1995
1399098738394592399 ~1996
1399123192798246399 ~1995
139917467699587335110 ~1998
1399179712798359439 ~1995
1399223692798447380111 ~2000
1399228312798456639 ~1995
1399234312798468639 ~1995
1399269592798539199 ~1995
1399322512798645039 ~1995
1399327211007515591311 ~1998
1399333312798666639 ~1995
1399336578396019439 ~1996
1399343032798686079 ~1995
1399357912798715839 ~1995
1399403218396419279 ~1996
139940797643727666310 ~1998
1399421512798843039 ~1995
1399440712798881439 ~1995
1399490632798981279 ~1995
1399500378397002239 ~1996
1399515832799031679 ~1995
Exponent Prime Factor Digits Year
139951607335883856910 ~1997
1399518592799037199 ~1995
1399572832799145679 ~1995
1399608232799216479 ~1995
139964771111971816910 ~1996
1399768218398609279 ~1996
1399772512799545039 ~1995
1399777912799555839 ~1995
1399850992799701999 ~1995
1399902738399416399 ~1996
139992469335981925710 ~1997
1399983112799966239 ~1995
1400054512800109039 ~1995
140006501112005200910 ~1996
1400102392800204799 ~1995
140010907140010907110 ~1996
1400214112800428239 ~1995
1400247112800494239 ~1995
1400270032800540079 ~1995
1400270992800541999 ~1995
1400313232800626479 ~1995
140034679140034679110 ~1996
1400359792800719599 ~1995
140037767700188835110 ~1998
1400403592800807199 ~1995
Exponent Prime Factor Digits Year
1400411032800822079 ~1995
1400412592800825199 ~1995
1400417632800835279 ~1995
1400437312800874639 ~1995
140044439112035551310 ~1996
1400498032800996079 ~1995
140050619112040495310 ~1996
1400568592801137199 ~1995
140061797112049437710 ~1996
140064167112051333710 ~1996
1400682832801365679 ~1995
1400745592801491199 ~1995
1400762392801524799 ~1995
1400784232801568479 ~1995
1400821192801642399 ~1995
1400834032801668079 ~1995
1400846032801692079 ~1995
1400888538405331199 ~1996
1400895138405370799 ~1996
1400924512801849039 ~1995
140097511560390044110 ~1998
1400981032801962079 ~1995
1401021978406131839 ~1996
1401087411429109158311 ~1999
140110909336266181710 ~1997
Home
4.739.325 digits
e-mail
25-04-20