Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1394614818367688879 ~1996
1394662312789324639 ~1995
1394678512789357039 ~1995
1394743192789486399 ~1995
1394750512789501039 ~1995
1394752912789505839 ~1995
1394756392789512799 ~1995
1394773192789546399 ~1995
1394811138368866799 ~1996
1394822512789645039 ~1995
1394827192789654399 ~1995
1394859592789719199 ~1995
1394899432789798879 ~1995
1394914312789828639 ~1995
1394925178369551039 ~1996
1394986312789972639 ~1995
1395018018370108079 ~1996
1395038632790077279 ~1995
1395065178370391039 ~1996
1395074938370449599 ~1996
1395219232790438479 ~1995
1395290032790580079 ~1995
1395413992790827999 ~1995
139547503139547503110 ~1996
1395522618373135679 ~1996
Exponent Prime Factor Digits Year
1395543018373258079 ~1996
1395553432791106879 ~1995
1395603471367691400711 ~1999
1395632538373795199 ~1996
139563817558255268110 ~1998
1395663738373982399 ~1996
1395670792791341599 ~1995
1395685432791370879 ~1995
139569119111655295310 ~1996
1395720618374323679 ~1996
139572791362889256710 ~1997
1395744232791488479 ~1995
1395756778374540639 ~1996
1395782512791565039 ~1995
1395794392791588799 ~1995
1395796912791593839 ~1995
1395865192791730399 ~1995
1395885832791771679 ~1995
139589897670031505710 ~1998
1395902992791805999 ~1995
1395945712791891439 ~1995
1396005112792010239 ~1995
1396011832792023679 ~1995
1396027792792055599 ~1995
1396052992792105999 ~1995
Exponent Prime Factor Digits Year
1396056592792113199 ~1995
1396109632792219279 ~1995
1396180912792361839 ~1995
1396214032792428079 ~1995
139624493195474290310 ~1997
1396291792792583599 ~1995
1396304818377828879 ~1996
1396320232792640479 ~1995
139632617111706093710 ~1996
1396342792792685599 ~1995
139639091111711272910 ~1996
139639127363061730310 ~1997
1396456792792913599 ~1995
1396515112793030239 ~1995
139663637111730909710 ~1996
1396679392793358799 ~1995
1396713592793427199 ~1995
1396721392793442799 ~1995
139685087335244208910 ~1997
139686709335248101710 ~1997
139688287139688287110 ~1996
1396888912793777839 ~1995
1397044312794088639 ~1995
1397061112794122239 ~1995
1397076112794152239 ~1995
Exponent Prime Factor Digits Year
1397104192794208399 ~1995
1397147032794294079 ~1995
1397174992794349999 ~1995
1397178138383068799 ~1996
1397196232794392479 ~1995
1397212432794424879 ~1995
1397218192794436399 ~1995
1397226832794453679 ~1995
1397287312794574639 ~1995
139735447139735447110 ~1996
139738927558955708110 ~1998
1397469232794938479 ~1995
1397507032795014079 ~1995
1397701312795402639 ~1995
1397706232795412479 ~1995
139772741111818192910 ~1996
1397800312795600639 ~1995
139781471670951060910 ~1998
1397816392795632799 ~1995
1397837891006443280911 ~1998
139788427251619168710 ~1997
139789159139789159110 ~1996
1398062032796124079 ~1995
139807691111846152910 ~1996
1398082192796164399 ~1995
Home
4.739.325 digits
e-mail
25-04-20