Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1038902392077804799 ~1994
1038931918311455299 ~1995
1038953216233719279 ~1995
1039008832078017679 ~1994
1039023416234140479 ~1995
103902727103902727110 ~1995
103904617249371080910 ~1996
1039069198312553539 ~1995
1039093432078186879 ~1994
1039095776234574639 ~1995
1039101898312815139 ~1995
1039108792078217599 ~1994
1039130632078261279 ~1994
1039201192078402399 ~1994
1039225312078450639 ~1994
1039233832078467679 ~1994
1039256632078513279 ~1994
1039260418314083299 ~1995
1039287118314296899 ~1995
1039296712078593439 ~1994
1039318192078636399 ~1994
103933493145506890310 ~1996
1039371592078743199 ~1994
1039372792078745599 ~1994
1039378312078756639 ~1994
Exponent Prime Factor Digits Year
103939817311819451110 ~1996
1039424536236547199 ~1995
1039449592078899199 ~1994
1039466936236801599 ~1995
1039474912078949839 ~1994
1039476712078953439 ~1994
1039521712079043439 ~1994
1039525312079050639 ~1994
1039560592079121199 ~1994
1039568992079137999 ~1994
1039588432079176879 ~1994
1039615312079230639 ~1994
1039641232079282479 ~1994
1039642912079285839 ~1994
1039646992079293999 ~1994
1039674832079349679 ~1994
1039677712079355439 ~1994
1039683776238102639 ~1995
103972577145561607910 ~1996
103973357395098756710 ~1997
1039752736238516399 ~1995
1039755176238531039 ~1995
1039772776238636639 ~1995
1039780198318241539 ~1995
1039798816238792879 ~1995
Exponent Prime Factor Digits Year
1039815616238893679 ~1995
1039823032079646079 ~1994
1039827712079655439 ~1994
1039867312079734639 ~1994
1039886392079772799 ~1994
1039893112079786239 ~1994
1039907032079814079 ~1994
1039928032079856079 ~1994
1039935232079870479 ~1994
1039960312079920639 ~1994
1040012032080024079 ~1994
1040013976240083839 ~1995
1040030992080061999 ~1994
104005123104005123110 ~1995
1040083936240503599 ~1995
1040136712080273439 ~1994
1040171632080343279 ~1994
1040183632080367279 ~1994
1040213816241282879 ~1995
1040241712080483439 ~1994
1040287792080575599 ~1994
1040316112080632239 ~1994
104034197145647875910 ~1996
104038391187269103910 ~1996
1040387992080775999 ~1994
Exponent Prime Factor Digits Year
1040434312080868639 ~1994
1040438992080877999 ~1994
1040449912080899839 ~1994
1040452376242714239 ~1995
1040456992080913999 ~1994
1040512192081024399 ~1994
1040514112081028239 ~1994
1040564578324516579 ~1995
1040623792081247599 ~1994
1040633632081267279 ~1994
1040640112081280239 ~1994
1040697112081394239 ~1994
104070797395469028710 ~1997
1040714032081428079 ~1994
1040740792081481599 ~1994
1040742616244455679 ~1995
1040745832081491679 ~1994
1040764432081528879 ~1994
1040775112081550239 ~1994
1040801992081603999 ~1994
1040808712081617439 ~1994
1040812312081624639 ~1994
1040826232081652479 ~1994
1040844112081688239 ~1994
1040883712081767439 ~1994
Home
4.739.325 digits
e-mail
25-04-20