Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
918678015512068079 ~1994
918701511837403039 ~1993
918718311837436639 ~1993
918767031837534079 ~1993
918794391837588799 ~1993
918799191837598399 ~1993
918824577350596579 ~1995
918844911837689839 ~1993
918860511837721039 ~1993
918893877351150979 ~1995
918904317351234499 ~1995
918925191837850399 ~1993
918953391837906799 ~1993
918974531157907907911 ~1998
918985311837970639 ~1993
918990231837980479 ~1993
919018375514110239 ~1994
919034031838068079 ~1993
919052391838104799 ~1993
919060431838120879 ~1993
919085391838170799 ~1993
919105191838210399 ~1993
919111191838222399 ~1993
919136031838272079 ~1993
919166535514999199 ~1994
Exponent Prime Factor Digits Year
919185799191857919 ~1995
919194799191947919 ~1995
919205391838410799 ~1993
919222977353783779 ~1995
919239831838479679 ~1993
919241031838482079 ~1993
919247991838495999 ~1993
919253031838506079 ~1993
91926337147082139310 ~1995
919275975515655839 ~1994
919278135515668799 ~1994
919297575515785439 ~1994
919301997354415939 ~1995
919330431838660879 ~1993
91934477128708267910 ~1995
91937113147099380910 ~1995
919398111838796239 ~1993
919401111838802239 ~1993
919411911838823839 ~1993
919418511838837039 ~1993
919421391838842799 ~1993
919468431838936879 ~1993
919477311838954639 ~1993
91949731165509515910 ~1996
919521231839042479 ~1993
Exponent Prime Factor Digits Year
91953181147125089710 ~1995
919547631839095279 ~1993
919607277356858179 ~1995
919640031839280079 ~1993
919642311839284639 ~1993
91964263147142820910 ~1995
919655511839311039 ~1993
919661391839322799 ~1993
91970563147152900910 ~1995
919747871103697444111 ~1998
919752231839504479 ~1993
919776591839553199 ~1993
919812831839625679 ~1993
919813911839627839 ~1993
919874031839748079 ~1993
919888431839776879 ~1993
919911831839823679 ~1993
91992533128789546310 ~1995
919931577359452579 ~1995
919981615519889679 ~1994
920014911840029839 ~1993
920021935520131599 ~1994
92003447165606204710 ~1996
920102511840205039 ~1993
92012881147220609710 ~1995
Exponent Prime Factor Digits Year
920137911840275839 ~1993
920138935520833599 ~1994
920139591840279199 ~1993
92014987147223979310 ~1995
920201391840402799 ~1993
92025589220861413710 ~1996
920282031840564079 ~1993
920290431840580879 ~1993
920296431840592879 ~1993
92030681276092043110 ~1996
920329911840659839 ~1993
920366215522197279 ~1994
920394711840789439 ~1993
920424591840849199 ~1993
920441631840883279 ~1993
920493679204936719 ~1995
920527911841055839 ~1993
920528991841057999 ~1993
92059871165707767910 ~1996
920630631841261279 ~1993
9206434110955656579112 ~2000
920661135523966799 ~1994
920682831841365679 ~1993
920683911841367839 ~1993
920690511841381039 ~1993
Home
4.918.085 digits
e-mail
25-07-13