Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4318694679591010...50240715 2025
43188812729986377625459912 ~2022
43193078198386386156396712 ~2022
43194953147986389906295912 ~2022
4319503424515528...83372914 2025
43196186573986392373147912 ~2022
4319818912391736...27807915 2025
4319833354791425...70807115 2025
43200140599186400281198312 ~2022
43202649170386405298340712 ~2022
43202676458386405352916712 ~2022
43202696441986405392883912 ~2022
43210589729986421179459912 ~2022
43212642335986425284671912 ~2022
43213696831186427393662312 ~2022
43218486731986436973463912 ~2022
43222129373986444258747912 ~2022
43225496303986450992607912 ~2022
43227540467986455080935912 ~2022
43233341768386466683536712 ~2022
43240364915986480729831912 ~2022
43245207050386490414100712 ~2022
43245852823186491705646312 ~2022
43253925815986507851631912 ~2022
43255912909186511825818312 ~2022
Exponent Prime Factor Dig. Year
43258020469186516040938312 ~2022
43261282583986522565167912 ~2022
43270272163186540544326312 ~2022
43270661138386541322276712 ~2022
43276582163986553164327912 ~2022
43278624991186557249982312 ~2022
43278671348386557342696712 ~2022
43289709275986579418551912 ~2022
43290030133186580060266312 ~2022
43296756518386593513036712 ~2022
43299015521986598031043912 ~2022
43299502651186599005302312 ~2022
43300294325986600588651912 ~2022
43302048998386604097996712 ~2022
4330210338172243...51720715 2025
43302184423186604368846312 ~2022
43302998243986605996487912 ~2022
43304515706386609031412712 ~2022
43307513180386615026360712 ~2022
43309271851186618543702312 ~2022
43309762751986619525503912 ~2022
43312108855186624217710312 ~2022
43312982353186625964706312 ~2022
4331357964198749...87663914 2025
4331458494592529...08405715 2025
Exponent Prime Factor Dig. Year
43320421697986640843395912 ~2022
43326792445186653584890312 ~2022
43328037211186656074422312 ~2022
43332067331986664134663912 ~2022
43336472756386672945512712 ~2022
43342436407186684872814312 ~2022
43342879625986685759251912 ~2022
43344320453986688640907912 ~2022
43344593185186689186370312 ~2022
43348130624386696261248712 ~2022
43351131053986702262107912 ~2022
43355692609186711385218312 ~2022
43357258399186714516798312 ~2022
43360429211986720858423912 ~2022
4336289246477284...34069714 2025
43363248890386726497780712 ~2022
43364566495186729132990312 ~2022
43367457697186734915394312 ~2022
43373491598386746983196712 ~2022
43377163664386754327328712 ~2022
43379796434386759592868712 ~2022
43380616523986761233047912 ~2022
43390742972386781485944712 ~2022
43391688983986783377967912 ~2022
43393427909986786855819912 ~2022
Exponent Prime Factor Dig. Year
43394128723186788257446312 ~2022
43397320088386794640176712 ~2022
4339928353371076...16357715 2025
43400834875186801669750312 ~2022
43406384564386812769128712 ~2022
43407801041986815602083912 ~2022
43409805071986819610143912 ~2022
43410037442386820074884712 ~2022
43412547185986825094371912 ~2022
43415075132386830150264712 ~2022
43415697547186831395094312 ~2022
43416287593186832575186312 ~2022
43422514829986845029659912 ~2022
43422697913986845395827912 ~2022
43424944727986849889455912 ~2022
4342504285676865...64427116 2025
43435287337186870574674312 ~2022
43437443852386874887704712 ~2022
43442985403186885970806312 ~2022
43449645275986899290551912 ~2022
43451318507986902637015912 ~2022
43451550626386903101252712 ~2022
43453761835186907523670312 ~2022
43454664709186909329418312 ~2022
43454940734386909881468712 ~2022
Home
5.247.179 digits
e-mail
25-12-14