Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
41821269239983642538479912 ~2022
41824416031183648832062312 ~2022
41828525893183657051786312 ~2022
41832664766383665329532712 ~2022
41843963659183687927318312 ~2022
41846669821183693339642312 ~2022
41849822918383699645836712 ~2022
41851512695983703025391912 ~2022
41852351731183704703462312 ~2022
41853215117983706430235912 ~2022
41854771543183709543086312 ~2022
41856623447983713246895912 ~2022
41860630301983721260603912 ~2022
41861017580383722035160712 ~2022
41872795373983745590747912 ~2022
41874898304383749796608712 ~2022
41874947545183749895090312 ~2022
4188087048775628...35468915 2025
41883228925183766457850312 ~2022
41886529117183773058234312 ~2022
41892502495183785004990312 ~2022
4189273572737881...73422316 2025
41898065531983796131063912 ~2022
4189889563018379...26020114 2025
41899029338383798058676712 ~2022
Exponent Prime Factor Dig. Year
41899157363983798314727912 ~2022
41900086481983800172963912 ~2022
4190506996371910...03447315 2025
41907913853983815827707912 ~2022
41920687073983841374147912 ~2022
41921934943183843869886312 ~2022
41923472153983846944307912 ~2022
4192644491291677...65160115 2025
41927187986383854375972712 ~2022
41928339937183856679874312 ~2022
41933129396383866258792712 ~2022
41939199416383878398832712 ~2022
41939671847983879343695912 ~2022
41948223179983896446359912 ~2022
41950447627183900895254312 ~2022
41951112452383902224904712 ~2022
41954800448383909600896712 ~2022
41962812865183925625730312 ~2022
41964627776383929255552712 ~2022
41967462290383934924580712 ~2022
41979560719183959121438312 ~2022
41981815562383963631124712 ~2022
41982268841983964537683912 ~2022
41988798187183977596374312 ~2022
41989904678383979809356712 ~2022
Exponent Prime Factor Dig. Year
41989986395983979972791912 ~2022
4199063916178314...54016714 2025
41991364913983982729827912 ~2022
41993409721183986819442312 ~2022
41995562809183991125618312 ~2022
41995676381983991352763912 ~2022
41995742624383991485248712 ~2022
41998445714383996891428712 ~2022
42000998540384001997080712 ~2022
42002895751184005791502312 ~2022
42004288991984008577983912 ~2022
42004668548384009337096712 ~2022
42006506033984013012067912 ~2022
42011922542384023845084712 ~2022
42017730914384035461828712 ~2022
42021097937984042195875912 ~2022
42021488762384042977524712 ~2022
42021644335184043288670312 ~2022
42029001991184058003982312 ~2022
42040223659184080447318312 ~2022
42042768272384085536544712 ~2022
4204277991077735...03568914 2025
42055238581184110477162312 ~2022
42056460836384112921672712 ~2022
42056476001984112952003912 ~2022
Exponent Prime Factor Dig. Year
42057735371984115470743912 ~2022
42058474580384116949160712 ~2022
42064299541184128599082312 ~2022
42064778576384129557152712 ~2022
4206554909471556...65039115 2025
4207186493834510...13857715 2025
42075114739184150229478312 ~2022
4207757764196395...01568914 2025
42078008351984156016703912 ~2022
4208186731339089...39672914 2025
42082289983184164579966312 ~2022
42083271727184166543454312 ~2022
4208404296779679...82571114 2025
42085847750384171695500712 ~2022
42088258183184176516366312 ~2022
4209213239236061...64491314 2025
42101097913184202195826312 ~2022
42102486391184204972782312 ~2022
42104642909984209285819912 ~2022
42104803184384209606368712 ~2022
42105563833184211127666312 ~2022
4210583893196400...17648914 2025
42117694603184235389206312 ~2022
42118740707984237481415912 ~2022
42118748792384237497584712 ~2022
Home
5.247.179 digits
e-mail
25-12-14