Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4052503433218996...21726314 2025
40527129392381054258784712 ~2022
40527247633181054495266312 ~2022
40528997149181057994298312 ~2022
4053064840674571...02757715 2025
4054818165135757...94484714 2025
4054880246631240...54687915 2025
40554147044381108294088712 ~2022
40556319649181112639298312 ~2022
40557419324381114838648712 ~2022
40560102767981120205535912 ~2022
40563702047981127404095912 ~2022
40563755696381127511392712 ~2022
40565188103981130376207912 ~2022
40566260623181132521246312 ~2022
4057064211299087...33289714 2025
40573643705981147287411912 ~2022
40573941463181147882926312 ~2022
40577152217981154304435912 ~2022
40583189600381166379200712 ~2022
40585039967981170079935912 ~2022
40585684196381171368392712 ~2022
40585887869981171775739912 ~2022
40586015891981172031783912 ~2022
40587606619181175213238312 ~2022
Exponent Prime Factor Dig. Year
40588713689981177427379912 ~2022
40591236344381182472688712 ~2022
40591700474381183400948712 ~2022
40593458305181186916610312 ~2022
40600114099181200228198312 ~2022
4060129223391396...28461715 2025
4060472285896496...57424114 2025
40611077936381222155872712 ~2022
40611441829181222883658312 ~2022
40619461273181238922546312 ~2022
40626244496381252488992712 ~2022
4062764623675606...80664714 2025
40632502625981265005251912 ~2022
40634541805181269083610312 ~2022
40636967192381273934384712 ~2022
40636998133181273996266312 ~2022
4063738420519752...09224114 2025
40639284494381278568988712 ~2022
40641712297181283424594312 ~2022
4064202067019997...84844714 2025
40643301889181286603778312 ~2022
40648331708381296663416712 ~2022
40651114979981302229959912 ~2022
40652712899981305425799912 ~2022
40656275495981312550991912 ~2022
Exponent Prime Factor Dig. Year
4065930257816830...33120914 2025
40661346551981322693103912 ~2022
4066270530836912...02411114 2025
40664125652381328251304712 ~2022
40665364097981330728195912 ~2022
40670214062381340428124712 ~2022
40670257481981340514963912 ~2022
40673336252381346672504712 ~2022
4067905575299112...88649714 2025
40679391062381358782124712 ~2022
40688271463181376542926312 ~2022
40689686017181379372034312 ~2022
40692561332381385122664712 ~2022
40696403483981392806967912 ~2022
40697805029981395610059912 ~2022
40698556121981397112243912 ~2022
4069876074718790...21373714 2025
4069908769971660...81477715 2025
40699145081981398290163912 ~2022
40700514049181401028098312 ~2022
40705743320381411486640712 ~2022
40707308773181414617546312 ~2022
4070772849831147...36520715 2025
40707891674381415783348712 ~2022
40710472946381420945892712 ~2022
Exponent Prime Factor Dig. Year
40711540298381423080596712 ~2022
40713204521981426409043912 ~2022
40714626485981429252971912 ~2022
40716854485181433708970312 ~2022
40718644352381437288704712 ~2022
40719290791181438581582312 ~2022
40724165273981448330547912 ~2022
40725116846381450233692712 ~2022
4072778977732085...65977715 2025
4073183952411881...60134315 2025
40734481694381468963388712 ~2022
40735090853981470181707912 ~2022
40739188016381478376032712 ~2022
40740354109181480708218312 ~2022
40746691207181493382414312 ~2022
40752241448381504482896712 ~2022
40754129720381508259440712 ~2022
40760646955181521293910312 ~2022
4076330621218397...79692714 2025
40767705617981535411235912 ~2022
40772491879181544983758312 ~2022
40775057113181550114226312 ~2022
40775078365181550156730312 ~2022
40778813243981557626487912 ~2022
4077995998818482...77524914 2025
Home
5.247.179 digits
e-mail
25-12-14