Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
34376488003168752976006312 ~2021
34377922633168755845266312 ~2021
34378271507968756543015912 ~2021
34378546322368757092644712 ~2021
34378662110368757324220712 ~2021
34381367687968762735375912 ~2021
34382004175168764008350312 ~2021
34382145506368764291012712 ~2021
34383794516368767589032712 ~2021
34384943915968769887831912 ~2021
3438584776639077...10303314 2025
34388767937968777535875912 ~2021
34390218935968780437871912 ~2021
34390738181968781476363912 ~2021
34393626665968787253331912 ~2021
34395078671968790157343912 ~2021
3439625635432545...70218314 2024
34398572629168797145258312 ~2021
34400354575168800709150312 ~2021
34405362713968810725427912 ~2021
34407019910368814039820712 ~2021
34407399971968814799943912 ~2021
34418300719168836601438312 ~2021
34419366206368838732412712 ~2021
34431932789968863865579912 ~2021
Exponent Prime Factor Dig. Year
34433058452368866116904712 ~2021
34436193497968872386995912 ~2021
34436737879168873475758312 ~2021
3443677163514132...96212114 2024
34437372338368874744676712 ~2021
3443921524495234...17224914 2024
34441673273968883346547912 ~2021
34441800247168883600494312 ~2021
34445441953168890883906312 ~2021
34450732105168901464210312 ~2021
34451256290368902512580712 ~2021
3445344865073810...07674315 2025
34453674482368907348964712 ~2021
34461064913968922129827912 ~2021
34462557109168925114218312 ~2021
34463303975968926607951912 ~2021
34464198968368928397936712 ~2021
34465195409968930390819912 ~2021
34466297083168932594166312 ~2021
3446668402018547...36984914 2025
34467508025968935016051912 ~2021
3446902077119996...23619114 2025
34475217653968950435307912 ~2021
34478694014368957388028712 ~2021
34479634007968959268015912 ~2021
Exponent Prime Factor Dig. Year
3447972141835220...27306315 2025
34480382857168960765714312 ~2021
34481677430368963354860712 ~2021
3448245223191655...07131314 2024
34485374929168970749858312 ~2021
34488454651168976909302312 ~2021
34493131765168986263530312 ~2021
34496228899168992457798312 ~2021
3449642524817658...05078314 2025
34498103993968996207987912 ~2021
3449907237196623...95404914 2024
3450211426213312...69161714 2024
34502917855169005835710312 ~2021
3450393052794416...07571314 2024
3450448783313312...31977714 2024
34505710099169011420198312 ~2021
34509591137969019182275912 ~2021
3451244780331014...54170315 2025
34517388782369034777564712 ~2021
34517614375169035228750312 ~2021
34518628829969037257659912 ~2021
34520000885969040001771912 ~2021
34521107876369042215752712 ~2021
3452172947112485...21919314 2024
34522101877169044203754312 ~2021
Exponent Prime Factor Dig. Year
34523738507969047477015912 ~2021
34525006901969050013803912 ~2021
34527945571169055891142312 ~2021
34533954883169067909766312 ~2021
34536410168369072820336712 ~2021
34538880014369077760028712 ~2021
3454456503537737...67907314 2025
34545349327169090698654312 ~2021
3454683483174145...79804114 2024
34551078185969102156371912 ~2021
34561625141969123250283912 ~2021
34562589829169125179658312 ~2021
34562904062369125808124712 ~2021
34567366334369134732668712 ~2021
34569017189969138034379912 ~2021
34570574510369141149020712 ~2021
34571682565169143365130312 ~2021
34573630909169147261818312 ~2021
3457397458334356...97495914 2024
34574352533969148705067912 ~2021
34574666534369149333068712 ~2021
34579300400369158600800712 ~2021
34581594187169163188374312 ~2021
34584063641969168127283912 ~2021
3458680254238370...15236714 2025
Home
5.247.179 digits
e-mail
25-12-14