Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
42359854598384719709196712 ~2022
42359940218384719880436712 ~2022
42362232217184724464434312 ~2022
42362404955984724809911912 ~2022
4236252565337032...58447914 2025
4236280250691558...22539315 2025
42363762068384727524136712 ~2022
42365065514384730131028712 ~2022
42371194355984742388711912 ~2022
42372253976384744507952712 ~2022
4237234679111694...16440115 2025
42375477677984750955355912 ~2022
42376017403184752034806312 ~2022
42376131338384752262676712 ~2022
42380642029184761284058312 ~2022
42382290329984764580659912 ~2022
42382593032384765186064712 ~2022
42383479310384766958620712 ~2022
42389970623984779941247912 ~2022
42390341978384780683956712 ~2022
42393557213984787114427912 ~2022
42393562001984787124003912 ~2022
42394625177984789250355912 ~2022
42399399151184798798302312 ~2022
42399757001984799514003912 ~2022
Exponent Prime Factor Dig. Year
4240159366211899...60620915 2025
42408634531184817269062312 ~2022
4241260497775683...67011914 2025
42413000978384826001956712 ~2022
42418755233984837510467912 ~2022
42425944345184851888690312 ~2022
42426458893184852917786312 ~2022
42426825413984853650827912 ~2022
42427649468384855298936712 ~2022
4243032699613869...20443315 2025
42430430549984860861099912 ~2022
42431019175184862038350312 ~2022
42437069087984874138175912 ~2022
42437998201184875996402312 ~2022
42439690699184879381398312 ~2022
42443798519984887597039912 ~2022
4244466202096791...23344114 2025
42446593987184893187974312 ~2022
42447039179984894078359912 ~2022
42448253125184896506250312 ~2022
4245266928731621...67748715 2025
42453293267984906586535912 ~2022
4246195014977023...47603915 2025
42462129320384924258640712 ~2022
42464241164384928482328712 ~2022
Exponent Prime Factor Dig. Year
42464517623984929035247912 ~2022
42464567282384929134564712 ~2022
42469622531984939245063912 ~2022
42471350792384942701584712 ~2022
42471767228384943534456712 ~2022
42473144761184946289522312 ~2022
42474239911184948479822312 ~2022
42479511761984959023523912 ~2022
4248200100736032...43036714 2025
42482071321184964142642312 ~2022
42482372108384964744216712 ~2022
42483094339184966188678312 ~2022
42485321189984970642379912 ~2022
4248670821977392...30227914 2025
42488871643184977743286312 ~2022
4249163059091113...14815915 2025
42492261853184984523706312 ~2022
42493836497984987672995912 ~2022
42494895349184989790698312 ~2022
42497625818384995251636712 ~2022
42498514513184997029026312 ~2022
42498918769184997837538312 ~2022
42498930271184997860542312 ~2022
42499141399184998282798312 ~2022
42499502135984999004271912 ~2022
Exponent Prime Factor Dig. Year
42500286797985000573595912 ~2022
42500734861185001469722312 ~2022
42502457315985004914631912 ~2022
4250379404638500...09260114 2025
42504610829985009221659912 ~2022
42506018312385012036624712 ~2022
42512520583185025041166312 ~2022
42515909077185031818154312 ~2022
42518100527985036201055912 ~2022
42519096890385038193780712 ~2022
42521822222385043644444712 ~2022
42528885025185057770050312 ~2022
42532200395985064400791912 ~2022
42534485461185068970922312 ~2022
42540202345185080404690312 ~2022
4254207576779784...26571114 2025
4254513998877564...99908715 2025
42551669749185103339498312 ~2022
42558073753185116147506312 ~2022
42561407072385122814144712 ~2022
42561654530385123309060712 ~2022
42569621579985139243159912 ~2022
42571128266385142256532712 ~2022
42576221275185152442550312 ~2022
4257626851936429...64143115 2025
Home
5.157.210 digits
e-mail
25-11-02