Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
41661540119983323080239912 ~2022
41663173733983326347467912 ~2022
41664011579983328023159912 ~2022
41664228919183328457838312 ~2022
41664333455983328666911912 ~2022
41666144528383332289056712 ~2022
41666233022383332466044712 ~2022
41666329190383332658380712 ~2022
41667432059983334864119912 ~2022
41669547503983339095007912 ~2022
4167017667113633...57199315 2025
41672146475983344292951912 ~2022
41673811649983347623299912 ~2022
41675279659183350559318312 ~2022
41679420629983358841259912 ~2022
41686622695183373245390312 ~2022
41690689585183381379170312 ~2022
41693140550383386281100712 ~2022
41693316437983386632875912 ~2022
41693521231183387042462312 ~2022
41695378586383390757172712 ~2022
41695926523183391853046312 ~2022
41697624973183395249946312 ~2022
41698968194383397936388712 ~2022
4170575204898007...93388914 2025
Exponent Prime Factor Dig. Year
41706995585983413991171912 ~2022
41708107153183416214306312 ~2022
41710492513183420985026312 ~2022
41710797320383421594640712 ~2022
41717308793983434617587912 ~2022
41717431841983434863683912 ~2022
41719284812383438569624712 ~2022
41723518201183447036402312 ~2022
41726572097983453144195912 ~2022
41727268709983454537419912 ~2022
41732902970383465805940712 ~2022
41735212051183470424102312 ~2022
41737727054383475454108712 ~2022
41741601629983483203259912 ~2022
41743557824383487115648712 ~2022
41747413688383494827376712 ~2022
41747493218383494986436712 ~2022
4175004524417014...01008914 2025
4175236851476012...66116914 2025
41763984923983527969847912 ~2022
41767088816383534177632712 ~2022
41767260377983534520755912 ~2022
41770348385983540696771912 ~2022
41778268808383556537616712 ~2022
41778302435983556604871912 ~2022
Exponent Prime Factor Dig. Year
41778317960383556635920712 ~2022
41782700189983565400379912 ~2022
41783128925983566257851912 ~2022
4178698659115766...49571914 2025
41797820629183595641258312 ~2022
41799029657983598059315912 ~2022
41800289282383600578564712 ~2022
41801449502383602899004712 ~2022
4181254471211329...18447915 2025
4181403110777275...12739914 2025
41819582768383639165536712 ~2022
41821269239983642538479912 ~2022
41824416031183648832062312 ~2022
41828525893183657051786312 ~2022
41832664766383665329532712 ~2022
41843963659183687927318312 ~2022
41846669821183693339642312 ~2022
41849822918383699645836712 ~2022
41851512695983703025391912 ~2022
41852351731183704703462312 ~2022
41853215117983706430235912 ~2022
41854771543183709543086312 ~2022
41856623447983713246895912 ~2022
41860630301983721260603912 ~2022
41861017580383722035160712 ~2022
Exponent Prime Factor Dig. Year
41872795373983745590747912 ~2022
41874898304383749796608712 ~2022
41874947545183749895090312 ~2022
4188087048775628...35468915 2025
41883228925183766457850312 ~2022
41886529117183773058234312 ~2022
41892502495183785004990312 ~2022
4189273572737881...73422316 2025
41898065531983796131063912 ~2022
4189889563018379...26020114 2025
41899029338383798058676712 ~2022
41899157363983798314727912 ~2022
41900086481983800172963912 ~2022
4190506996371910...03447315 2025
41907913853983815827707912 ~2022
41920687073983841374147912 ~2022
41921934943183843869886312 ~2022
41923472153983846944307912 ~2022
4192644491291677...65160115 2025
41927187986383854375972712 ~2022
41928339937183856679874312 ~2022
41933129396383866258792712 ~2022
41939199416383878398832712 ~2022
41939671847983879343695912 ~2022
41948223179983896446359912 ~2022
Home
5.142.307 digits
e-mail
25-10-26