Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
30763662811161527325622312 ~2021
30764255693961528511387912 ~2021
30764560199961529120399912 ~2021
30767738587161535477174312 ~2021
30775534433961551068867912 ~2021
30776251709961552503419912 ~2021
30776574463161553148926312 ~2021
30777058778361554117556712 ~2021
30777176387961554352775912 ~2021
30780032591961560065183912 ~2021
3078050321215171...39632914 2024
30780576905961561153811912 ~2021
3078458747998927...69171114 2024
30786382073961572764147912 ~2021
30787509638361575019276712 ~2021
30787552598361575105196712 ~2021
30791820746361583641492712 ~2021
3079311969832771...72847114 2024
30797743303161595486606312 ~2021
30798264338361596528676712 ~2021
30798773657961597547315912 ~2021
30799771934361599543868712 ~2021
3080452240333696...88396114 2024
30804922787961609845575912 ~2021
30805508971161611017942312 ~2021
Exponent Prime Factor Dig. Year
30808896872361617793744712 ~2021
30811802351961623604703912 ~2021
30820180550361640361100712 ~2021
30821076848361642153696712 ~2021
30822257323161644514646312 ~2021
30822349109961644698219912 ~2021
30823051811961646103623912 ~2021
30825080408361650160816712 ~2021
30826478647161652957294312 ~2021
30827433713961654867427912 ~2021
30829311221961658622443912 ~2021
30831010097961662020195912 ~2021
30831739703961663479407912 ~2021
30833522509161667045018312 ~2021
30834948577161669897154312 ~2021
3083559112512528...72258314 2024
30836364164361672728328712 ~2021
30839710052361679420104712 ~2021
30840545161161681090322312 ~2021
3084407916492899...41500714 2024
30844502653161689005306312 ~2021
30848164646361696329292712 ~2021
30848263097961696526195912 ~2021
30849411943161698823886312 ~2021
30849483596361698967192712 ~2021
Exponent Prime Factor Dig. Year
30852969575961705939151912 ~2021
30855987032361711974064712 ~2021
30857058776361714117552712 ~2021
30862064927961724129855912 ~2021
30862988465961725976931912 ~2021
3086337358734135...60698314 2024
30864019855161728039710312 ~2021
30865403815161730807630312 ~2021
30868787909961737575819912 ~2021
30869243996361738487992712 ~2021
30869453285961738906571912 ~2021
3087197822891278...86764715 2024
30872217833961744435667912 ~2021
3087450749171253...41630315 2025
30874765501161749531002312 ~2021
30878779076361757558152712 ~2021
30879189131961758378263912 ~2021
30883119536361766239072712 ~2021
30883517219961767034439912 ~2021
30884044193961768088387912 ~2021
30885011107161770022214312 ~2021
30886012501161772025002312 ~2021
3088867310512248...20512915 2024
3089026577576116...23588714 2024
30891567572361783135144712 ~2021
Exponent Prime Factor Dig. Year
30895254380361790508760712 ~2021
30895858856361791717712712 ~2021
3089795784612719...90456914 2024
30898856924361797713848712 ~2021
30900393691161800787382312 ~2021
30900585992361801171984712 ~2021
30901361342361802722684712 ~2021
30907956620361815913240712 ~2021
30908468348361816936696712 ~2021
30910283258361820566516712 ~2021
30910471418361820942836712 ~2021
30915818843961831637687912 ~2021
30916221080361832442160712 ~2021
30917000972361834001944712 ~2021
30917480576361834961152712 ~2021
30918087205161836174410312 ~2021
30918541855161837083710312 ~2021
3091945506718999...83012716 2025
30920563129161841126258312 ~2021
3092096936276740...21068714 2025
30921891461961843782923912 ~2021
30922112969961844225939912 ~2021
3092469234114515...81800714 2024
30926299513161852599026312 ~2021
30926601581961853203163912 ~2021
Home
5.142.307 digits
e-mail
25-10-26