Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
41511872009983023744019912 ~2022
41514308201983028616403912 ~2022
41514440629183028881258312 ~2022
41515098389983030196779912 ~2022
4152025913579300...46396914 2025
41525043680383050087360712 ~2022
41527854355183055708710312 ~2022
41528643929983057287859912 ~2022
41530544195983061088391912 ~2022
41540540321983081080643912 ~2022
41550916838383101833676712 ~2022
41557608259183115216518312 ~2022
41559088433983118176867912 ~2022
41563268839183126537678312 ~2022
41564169335983128338671912 ~2022
41569314776383138629552712 ~2022
41572860494383145720988712 ~2022
41574413909983148827819912 ~2022
41576325923983152651847912 ~2022
41577493742383154987484712 ~2022
41579253152383158506304712 ~2022
41580288026383160576052712 ~2022
41581507598383163015196712 ~2022
4159038744316987...90440914 2025
41594959856383189919712712 ~2022
Exponent Prime Factor Dig. Year
41597364260383194728520712 ~2022
41602123370383204246740712 ~2022
41603031457183206062914312 ~2022
41606056178383212112356712 ~2022
41607634811983215269623912 ~2022
41608417418383216834836712 ~2022
41609693279983219386559912 ~2022
4161199735377240...39543914 2025
41622400615183244801230312 ~2022
41622838280383245676560712 ~2022
41624463301183248926602312 ~2022
41625142553983250285107912 ~2022
41625895916383251791832712 ~2022
41630767538383261535076712 ~2022
41630799223183261598446312 ~2022
41631213337183262426674312 ~2022
41633465774383266931548712 ~2022
41634820988383269641976712 ~2022
41635260440383270520880712 ~2022
41637286177183274572354312 ~2022
41640575143183281150286312 ~2022
41643397769983286795539912 ~2022
41643709541983287419083912 ~2022
41643814255183287628510312 ~2022
41646476605183292953210312 ~2022
Exponent Prime Factor Dig. Year
41646545384383293090768712 ~2022
41646829729183293659458312 ~2022
41647672891183295345782312 ~2022
41652400243183304800486312 ~2022
41654328326383308656652712 ~2022
41655274339183310548678312 ~2022
41655643502383311287004712 ~2022
41657851670383315703340712 ~2022
41659372285183318744570312 ~2022
41659804280383319608560712 ~2022
41661540119983323080239912 ~2022
41663173733983326347467912 ~2022
41664011579983328023159912 ~2022
41664228919183328457838312 ~2022
41664333455983328666911912 ~2022
41666144528383332289056712 ~2022
41666233022383332466044712 ~2022
41666329190383332658380712 ~2022
41667432059983334864119912 ~2022
41669547503983339095007912 ~2022
41672146475983344292951912 ~2022
41673811649983347623299912 ~2022
41675279659183350559318312 ~2022
41679420629983358841259912 ~2022
41686622695183373245390312 ~2022
Exponent Prime Factor Dig. Year
41690689585183381379170312 ~2022
41693140550383386281100712 ~2022
41693316437983386632875912 ~2022
41693521231183387042462312 ~2022
41695378586383390757172712 ~2022
41695926523183391853046312 ~2022
41697624973183395249946312 ~2022
41698968194383397936388712 ~2022
4170575204898007...93388914 2025
41706995585983413991171912 ~2022
41708107153183416214306312 ~2022
41710492513183420985026312 ~2022
41710797320383421594640712 ~2022
41717308793983434617587912 ~2022
41717431841983434863683912 ~2022
41719284812383438569624712 ~2022
41723518201183447036402312 ~2022
41726572097983453144195912 ~2022
41727268709983454537419912 ~2022
41732902970383465805940712 ~2022
41735212051183470424102312 ~2022
41737727054383475454108712 ~2022
41741601629983483203259912 ~2022
41743557824383487115648712 ~2022
41747493218383494986436712 ~2022
Home
5.037.460 digits
e-mail
25-09-07