Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
40933780826381867561652712 ~2022
40935567494381871134988712 ~2022
40938025034381876050068712 ~2022
40941209651981882419303912 ~2022
40941610223981883220447912 ~2022
40941755717981883511435912 ~2022
40941829345181883658690312 ~2022
40942736603981885473207912 ~2022
40943723029181887446058312 ~2022
40946855456381893710912712 ~2022
40947959096381895918192712 ~2022
40948459289981896918579912 ~2022
4094926245371081...87776915 2025
40949415611981898831223912 ~2022
40953866377181907732754312 ~2022
40958946097181917892194312 ~2022
40960802911181921605822312 ~2022
40962144791981924289583912 ~2022
4096223070238192...40460114 2025
40962691049981925382099912 ~2022
40972307735981944615471912 ~2022
40979052673181958105346312 ~2022
4098033391317212...68705714 2025
40981437164381962874328712 ~2022
40986277945181972555890312 ~2022
Exponent Prime Factor Dig. Year
40986502633181973005266312 ~2022
40987951022381975902044712 ~2022
40988775851981977551703912 ~2022
40988945767181977891534312 ~2022
40989584545181979169090312 ~2022
40993089115181986178230312 ~2022
40998380237981996760475912 ~2022
41001206822382002413644712 ~2022
41002547209182005094418312 ~2022
4100573818078939...23392714 2025
41007738769182015477538312 ~2022
41010548761182021097522312 ~2022
41011541761182023083522312 ~2022
41013196058382026392116712 ~2022
41015677709982031355419912 ~2022
41015749259982031498519912 ~2022
41017160486382034320972712 ~2022
41018117245182036234490312 ~2022
41025331412382050662824712 ~2022
41026692253182053384506312 ~2022
41032089775182064179550312 ~2022
41034413696382068827392712 ~2022
41037849949182075699898312 ~2022
41039421194382078842388712 ~2022
41043320765982086641531912 ~2022
Exponent Prime Factor Dig. Year
4104777396015828...02334314 2025
41049850823982099701647912 ~2022
4105016212671683...71947115 2025
41053160257182106320514312 ~2022
41057259649182114519298312 ~2022
41059742549982119485099912 ~2022
41067237245982134474491912 ~2022
41068686776382137373552712 ~2022
41076896827182153793654312 ~2022
41077095535182154191070312 ~2022
4107772008495915...92225714 2025
41083947383982167894767912 ~2022
41088451627182176903254312 ~2022
41088471085182176942170312 ~2022
41095755695982191511391912 ~2022
41098837339182197674678312 ~2022
41100456851982200913703912 ~2022
4110118581131085...54183315 2025
41103986261982207972523912 ~2022
41110156313982220312627912 ~2022
41110934273982221868547912 ~2022
41116861003182233722006312 ~2022
41119794133182239588266312 ~2022
41126002219182252004438312 ~2022
41133841367982267682735912 ~2022
Exponent Prime Factor Dig. Year
4113508082511258...32480715 2025
41141393072382282786144712 ~2022
41146491107982292982215912 ~2022
41152178989182304357978312 ~2022
41152902290382305804580712 ~2022
41155466474382310932948712 ~2022
41160399607182320799214312 ~2022
41161673015982323346031912 ~2022
41167617397182335234794312 ~2022
41171569321182343138642312 ~2022
41171607641982343215283912 ~2022
41176243171182352486342312 ~2022
41177690239182355380478312 ~2022
41179979144382359958288712 ~2022
41183045539182366091078312 ~2022
41187681644382375363288712 ~2022
41188577042382377154084712 ~2022
41198840366382397680732712 ~2022
41202153889182404307778312 ~2022
41202373121982404746243912 ~2022
41203688024382407376048712 ~2022
41210253842382420507684712 ~2022
41210429312382420858624712 ~2022
41213133215982426266431912 ~2022
41215159442382430318884712 ~2022
Home
5.037.460 digits
e-mail
25-09-07