Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16852565753933705131507912 ~2019
16854153206333708306412712 ~2019
16854348989933708697979912 ~2019
16854616136333709232272712 ~2019
16855124990333710249980712 ~2019
1685633986511213...02872115 2025
16857167395133714334790312 ~2019
1685775707873944...56415914 2024
1685777104493068...30171914 2024
16859394953933718789907912 ~2019
16859438930333718877860712 ~2019
16859618819933719237639912 ~2019
16861648397933723296795912 ~2019
16861780135133723560270312 ~2019
16862269076333724538152712 ~2019
16862354147933724708295912 ~2019
16862836838333725673676712 ~2019
1686427858697555...06931314 2023
16865319395933730638791912 ~2019
16865587711133731175422312 ~2019
1686600757195700...59302314 2023
16866225709133732451418312 ~2019
16866338657933732677315912 ~2019
1686792385571315...60744714 2024
16868050331933736100663912 ~2019
Exponent Prime Factor Dig. Year
16869263645933738527291912 ~2019
16869767090333739534180712 ~2019
16870601462333741202924712 ~2019
16873638881933747277763912 ~2019
1687398313992328...73306314 2024
16874484815933748969631912 ~2019
16874834987933749669975912 ~2019
16876855034333753710068712 ~2019
16877763506333755527012712 ~2019
1687834710611495...36004715 2023
16880332367933760664735912 ~2019
16881172853933762345707912 ~2019
16881321278333762642556712 ~2019
16882598929133765197858312 ~2019
16883086859933766173719912 ~2019
16883697500333767395000712 ~2019
16885865837933771731675912 ~2019
16887401615933774803231912 ~2019
16887747389933775494779912 ~2019
16889181107933778362215912 ~2019
16889185658333778371316712 ~2019
16889199080333778398160712 ~2019
16890360991133780721982312 ~2019
16891155481133782310962312 ~2019
16892650640333785301280712 ~2019
Exponent Prime Factor Dig. Year
16892752549133785505098312 ~2019
16895063285933790126571912 ~2019
16898709559133797419118312 ~2019
16898719025933797438051912 ~2019
16899178945133798357890312 ~2019
1690112714213481...91272714 2023
16902752168333805504336712 ~2019
16904871986333809743972712 ~2019
16905029803133810059606312 ~2019
1690584956771065...27651115 2023
16906341577133812683154312 ~2019
16907270395133814540790312 ~2019
16908353839133816707678312 ~2019
16908818237933817636475912 ~2019
16910062705133820125410312 ~2019
16910375341133820750682312 ~2019
16910884034333821768068712 ~2019
16911146461133822292922312 ~2019
16912568354333825136708712 ~2019
16914058687133828117374312 ~2019
16915590434333831180868712 ~2019
16916374123133832748246312 ~2019
16917014611133834029222312 ~2019
16918895425133837790850312 ~2019
16919014013933838028027912 ~2019
Exponent Prime Factor Dig. Year
16921889237933843778475912 ~2019
16921948880333843897760712 ~2019
16922885407133845770814312 ~2019
16923266599133846533198312 ~2019
16924405525133848811050312 ~2019
16924449839933848899679912 ~2019
16925475665933850951331912 ~2019
16927453369133854906738312 ~2019
16928619149933857238299912 ~2019
16929945692333859891384712 ~2019
16930393292333860786584712 ~2019
16930882568333861765136712 ~2019
16931371819133862743638312 ~2019
16931600239133863200478312 ~2019
16932836869133865673738312 ~2019
1693333951093115...70005714 2024
16934695121933869390243912 ~2019
16934832710333869665420712 ~2019
16936804298333873608596712 ~2019
16937799445133875598890312 ~2019
16938484586333876969172712 ~2019
16939636142333879272284712 ~2019
16947422695133894845390312 ~2019
16947836353133895672706312 ~2019
1694880104413932...42231314 2023
Home
5.142.307 digits
e-mail
25-10-26