Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
30005283833960010567667912 ~2021
30007419835160014839670312 ~2021
30013134707960026269415912 ~2021
3001372850872401...80696114 2024
30014271379160028542758312 ~2021
30015982123160031964246312 ~2021
30020437271960040874543912 ~2021
30021207392360042414784712 ~2021
30023882192360047764384712 ~2021
3002685147612342...15135914 2024
30028556353160057112706312 ~2021
30029636429960059272859912 ~2021
30034081391960068162783912 ~2021
30034793324360069586648712 ~2021
30038160697160076321394312 ~2021
30039330061160078660122312 ~2021
30039842315960079684631912 ~2021
30044615221160089230442312 ~2021
30044965931960089931863912 ~2021
30049356044360098712088712 ~2021
3004941463738113...52071114 2025
3004991541676310...37507114 2024
30050224409960100448819912 ~2021
30051806900360103613800712 ~2021
30053681045960107362091912 ~2021
Exponent Prime Factor Dig. Year
3005383592633426...95598314 2024
30055514450360111028900712 ~2021
30056019116360112038232712 ~2021
30057414731960114829463912 ~2021
30057781195160115562390312 ~2021
30060076813160120153626312 ~2021
30060414938360120829876712 ~2021
30063031778360126063556712 ~2021
30065990879960131981759912 ~2021
30066481663160132963326312 ~2021
30072929383160145858766312 ~2021
30073954303160147908606312 ~2021
30077678174360155356348712 ~2021
30078624133160157248266312 ~2021
30079627435160159254870312 ~2021
30084281737160168563474312 ~2021
30086655791960173311583912 ~2021
30090899351960181798703912 ~2021
30092268011960184536023912 ~2021
30096706988360193413976712 ~2021
3010146382093371...47940914 2024
30104013829160208027658312 ~2021
30105857125160211714250312 ~2021
30106426511960212853023912 ~2021
3010677631332306...55987915 2023
Exponent Prime Factor Dig. Year
30110795777960221591555912 ~2021
3011399220596564...00886314 2025
30119520755960239041511912 ~2021
30122241625160244483250312 ~2021
30122931251960245862503912 ~2021
30125905529960251811059912 ~2021
3012596151171705...15622315 2023
30128348443160256696886312 ~2021
30128371253960256742507912 ~2021
30129883111160259766222312 ~2021
30131256017960262512035912 ~2021
3013358005691293...62944717 2023
30134380055960268760111912 ~2021
30134384774360268769548712 ~2021
3013573722971585...82822315 2025
30143266327160286532654312 ~2021
30146319539960292639079912 ~2021
30149303216360298606432712 ~2021
30149519639960299039279912 ~2021
30149656279160299312558312 ~2021
30151981112360303962224712 ~2021
30152211776360304423552712 ~2021
30152624528360305249056712 ~2021
30152701799960305403599912 ~2021
30153381049160306762098312 ~2021
Exponent Prime Factor Dig. Year
30155527561160311055122312 ~2021
3015638080331007...88302315 2023
30156628421960313256843912 ~2021
30160202009960320404019912 ~2021
30160568615960321137231912 ~2021
30161382007160322764014312 ~2021
30163175305160326350610312 ~2021
30172584385160345168770312 ~2021
30173386753160346773506312 ~2021
30174472961960348945923912 ~2021
3017540438932245...65639315 2025
30175451792360350903584712 ~2021
30176614045160353228090312 ~2021
30176764640360353529280712 ~2021
30177576391160355152782312 ~2021
30182007919160364015838312 ~2021
30184427125160368854250312 ~2021
30185690009960371380019912 ~2021
30186268058360372536116712 ~2021
30190113635960380227271912 ~2021
3019170496132596...26671914 2024
30195134767160390269534312 ~2021
30195931964360391863928712 ~2021
30197859223160395718446312 ~2021
30198474416360396948832712 ~2021
Home
5.037.460 digits
e-mail
25-09-07