Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15812318039931624636079912 ~2018
15812794277931625588555912 ~2018
15813731642331627463284712 ~2018
15814458787131628917574312 ~2018
15815523739131631047478312 ~2018
15815949164331631898328712 ~2018
15815960732331631921464712 ~2018
15817656343131635312686312 ~2018
15817758013131635516026312 ~2018
15817885951131635771902312 ~2018
15818730923931637461847912 ~2018
15818776237131637552474312 ~2018
15819851083131639702166312 ~2018
15820691930331641383860712 ~2018
15823444424331646888848712 ~2018
15824533628331649067256712 ~2018
1582571899676456...50653714 2024
15827449663131654899326312 ~2018
15830772973131661545946312 ~2018
15831133229931662266459912 ~2018
15832000909131664001818312 ~2018
15832659835131665319670312 ~2018
15832712675931665425351912 ~2018
15836138630331672277260712 ~2019
15836969665131673939330312 ~2019
Exponent Prime Factor Dig. Year
15837201032331674402064712 ~2019
1583871076032914...79895314 2024
15839101109931678202219912 ~2019
15839331908331678663816712 ~2019
15840063674331680127348712 ~2019
15840502819131681005638312 ~2019
1584089416311752...44388715 2023
15841184881131682369762312 ~2019
15841617247131683234494312 ~2019
15842523881931685047763912 ~2019
15842673277131685346554312 ~2019
15843197261931686394523912 ~2019
15843937117131687874234312 ~2019
15844819165131689638330312 ~2019
15844849400331689698800712 ~2019
15846318974331692637948712 ~2019
1584648262513042...64019314 2024
15850030321131700060642312 ~2019
15852288740331704577480712 ~2019
15852864703131705729406312 ~2019
15853886767131707773534312 ~2019
15853952293131707904586312 ~2019
1585408545171087...19866315 2023
15856979861931713959723912 ~2019
15857859925131715719850312 ~2019
Exponent Prime Factor Dig. Year
15858242029131716484058312 ~2019
15858843193131717686386312 ~2019
15859552715931719105431912 ~2019
15859824071931719648143912 ~2019
15860522444331721044888712 ~2019
1586089371592664...44271314 2024
15861199969131722399938312 ~2019
15863867216331727734432712 ~2019
15865105040331730210080712 ~2019
1586529934098249...57268114 2025
15866132999931732265999912 ~2019
1586621461094823...41713714 2024
15866764333131733528666312 ~2019
15867859559931735719119912 ~2019
15867947465931735894931912 ~2019
1586798139792161...63939915 2024
15869439878331738879756712 ~2019
15870523513131741047026312 ~2019
15871214923131742429846312 ~2019
15871379498331742758996712 ~2019
15871498801131742997602312 ~2019
15872013989931744027979912 ~2019
15873110897931746221795912 ~2019
15873351697131746703394312 ~2019
15874512241131749024482312 ~2019
Exponent Prime Factor Dig. Year
15874941413931749882827912 ~2019
1587735468711247...84060715 2023
15877444754331754889508712 ~2019
15878175577131756351154312 ~2019
15880697365131761394730312 ~2019
15881137196331762274392712 ~2019
15882085951131764171902312 ~2019
15882502784331765005568712 ~2019
15882954560331765909120712 ~2019
15884100143931768200287912 ~2019
15884210960331768421920712 ~2019
15884864216331769728432712 ~2019
15885632570331771265140712 ~2019
15886882202331773764404712 ~2019
15888314213931776628427912 ~2019
15888384743931776769487912 ~2019
15889794167931779588335912 ~2019
15890421566331780843132712 ~2019
15890698736331781397472712 ~2019
15891342235131782684470312 ~2019
15892297115931784594231912 ~2019
15893414567931786829135912 ~2019
15893477005131786954010312 ~2019
1589409732073592...94478314 2023
15895294897131790589794312 ~2019
Home
5.142.307 digits
e-mail
25-10-26