Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13377940003126755880006312 ~2018
13378436651926756873303912 ~2018
13378947665926757895331912 ~2018
13379516195926759032391912 ~2018
13380827120326761654240712 ~2018
13383707413126767414826312 ~2018
13384569349126769138698312 ~2018
1338477603113212...47464114 2024
13385018793780310112762312 ~2019
13385972375926771944751912 ~2018
13386553496326773106992712 ~2018
13386644053126773288106312 ~2018
13387670522326775341044712 ~2018
13388134381126776268762312 ~2018
13389520117126779040234312 ~2018
13389778507126779557014312 ~2018
13389913764180339482584712 ~2019
13390110833926780221667912 ~2018
13390117595926780235191912 ~2018
13390889501926781779003912 ~2018
13391571215926783142431912 ~2018
13394690147926789380295912 ~2018
13394842276180369053656712 ~2019
1339522239832277...07711114 2025
13395405289126790810578312 ~2018
Exponent Prime Factor Dig. Year
13395696000180374176000712 ~2019
1339603794792572...85996914 2024
13396551968326793103936712 ~2018
13397261581126794523162312 ~2018
13397579519926795159039912 ~2018
13398047669926796095339912 ~2018
13399741769926799483539912 ~2018
13400797597126801595194312 ~2018
13401972629926803945259912 ~2018
13402020326326804040652712 ~2018
13402208066326804416132712 ~2018
13402220816326804441632712 ~2018
13402898454180417390724712 ~2019
13403497351126806994702312 ~2018
13404211535926808423071912 ~2018
13404667970326809335940712 ~2018
13406556239926813112479912 ~2018
13409031107926818062215912 ~2018
1340959245313030...94400714 2024
13410076118326820152236712 ~2018
13410857293126821714586312 ~2018
1341102036591772...23719915 2024
13411126141126822252282312 ~2018
13411305551926822611103912 ~2018
13411705003126823410006312 ~2018
Exponent Prime Factor Dig. Year
13412131585126824263170312 ~2018
13412496596326824993192712 ~2018
13413908857126827817714312 ~2018
13415097638326830195276712 ~2018
13416046698180496280188712 ~2019
13417380787780504284726312 ~2019
13417546524180505279144712 ~2019
13417920232180507521392712 ~2019
13418246692180509480152712 ~2019
13418359745926836719491912 ~2018
13419220229926838440459912 ~2018
13419671461126839342922312 ~2018
13420040053126840080106312 ~2018
13421624372326843248744712 ~2018
13422688573126845377146312 ~2018
13423284985126846569970312 ~2018
13423893511126847787022312 ~2018
13424357150326848714300712 ~2018
13425506375926851012751912 ~2018
13425684297780554105786312 ~2019
1342606436772287...82560915 2025
13426636307926853272615912 ~2018
13426790618326853581236712 ~2018
13426876957126853753914312 ~2018
13427682133126855364266312 ~2018
Exponent Prime Factor Dig. Year
13428481538326856963076712 ~2018
13428536336326857072672712 ~2018
13428840377926857680755912 ~2018
13428953783926857907567912 ~2018
13428982360180573894160712 ~2019
13429007455380574044731912 ~2019
13430336023126860672046312 ~2018
13430950975126861901950312 ~2018
13431148928326862297856712 ~2018
13431835853926863671707912 ~2018
13432005703126864011406312 ~2018
13432007446180592044676712 ~2019
13432031803126864063606312 ~2018
13434074600326868149200712 ~2018
13435873120180615238720712 ~2019
13437227665780623365994312 ~2019
13437574241926875148483912 ~2018
13437601673926875203347912 ~2018
13438090634326876181268712 ~2018
13438259765926876519531912 ~2018
13439020531780634123190312 ~2019
13439025499126878050998312 ~2018
13439173825126878347650312 ~2018
13439214019126878428038312 ~2018
13439307068326878614136712 ~2018
Home
5.142.307 digits
e-mail
25-10-26