Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13158588585778951531514312 ~2019
13159329992326318659984712 ~2018
13159458073126318916146312 ~2018
13161315995926322631991912 ~2018
13162704635926325409271912 ~2018
13162832954326325665908712 ~2018
13162952714326325905428712 ~2018
13163517182326327034364712 ~2018
13164444869378986669215912 ~2019
13164836205778989017234312 ~2019
13165445525926330891051912 ~2018
13165524272326331048544712 ~2018
13165929528178995577168712 ~2019
13166668478326333336956712 ~2018
13169124209926338248419912 ~2018
13169703912179018223472712 ~2019
13170012941926340025883912 ~2018
13170051302326340102604712 ~2018
13170122906326340245812712 ~2018
13170874393126341748786312 ~2018
13171926515926343853031912 ~2018
13172247115126344494230312 ~2018
13172868731926345737463912 ~2018
13172874464326345748928712 ~2018
13173357689926346715379912 ~2018
Exponent Prime Factor Dig. Year
13173718433926347436867912 ~2018
13174220165926348440331912 ~2018
13174400390326348800780712 ~2018
13174427131126348854262312 ~2018
13174594307926349188615912 ~2018
13174792025926349584051912 ~2018
13175410292326350820584712 ~2018
13176320704179057924224712 ~2019
13177330748326354661496712 ~2018
13177581341926355162683912 ~2018
13178235340179069412040712 ~2019
13178929236179073575416712 ~2019
13179794534326359589068712 ~2018
13180604779779083628678312 ~2019
13180912481926361824963912 ~2018
13184020032179104120192712 ~2019
13184792798326369585596712 ~2018
13185226507379111359043912 ~2019
13185904481926371808963912 ~2018
13186106401126372212802312 ~2018
13186407247126372814494312 ~2018
13187581001926375162003912 ~2018
13188339367126376678734312 ~2018
13192441260179154647560712 ~2019
13193066321926386132643912 ~2018
Exponent Prime Factor Dig. Year
1319307157275593...46824914 2025
13193704633126387409266312 ~2018
13194507413926389014827912 ~2018
13195128829126390257658312 ~2018
13196523001126393046002312 ~2018
13199001917926398003835912 ~2018
13199633605779197801634312 ~2019
13200144649126400289298312 ~2018
13200570321779203421930312 ~2019
13201009255126402018510312 ~2018
1320146166492825...96288714 2024
13201867435126403734870312 ~2018
13202953117126405906234312 ~2018
13202998259926405996519912 ~2018
13205347153126410694306312 ~2018
13207442801926414885603912 ~2018
13208398643926416797287912 ~2018
1320899045332853...37912914 2024
13209036992326418073984712 ~2018
13209820571926419641143912 ~2018
13210089119926420178239912 ~2018
13210167761926420335523912 ~2018
13211349008326422698016712 ~2018
1321223052131561...76176715 2025
13212600983926425201967912 ~2018
Exponent Prime Factor Dig. Year
13214003857126428007714312 ~2018
13214970038326429940076712 ~2018
13215023249926430046499912 ~2018
13215065413126430130826312 ~2018
13215879349126431758698312 ~2018
13216113779379296682675912 ~2019
13217629058326435258116712 ~2018
13218721333126437442666312 ~2018
13219104200326438208400712 ~2018
13219204585126438409170312 ~2018
13220086531126440173062312 ~2018
13220220697126440441394312 ~2018
13221685661926443371323912 ~2018
1322222108033199...01432714 2024
13222894225379337365351912 ~2019
13223866332179343197992712 ~2019
13224584549926449169099912 ~2018
13224653282326449306564712 ~2018
13225937971126451875942312 ~2018
13227327620326454655240712 ~2018
13229348261379376089567912 ~2019
13229659712326459319424712 ~2018
13230128629126460257258312 ~2018
13232324263126464648526312 ~2018
13232964647926465929295912 ~2018
Home
5.142.307 digits
e-mail
25-10-26