Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1179268699033962...28740914 2023
1179277189339453...96692915 2025
1179285367799835...67368714 2023
11792999603370757997619912 ~2019
11793864357770763186146312 ~2019
11794498460323588996920712 ~2017
11797427485770784564914312 ~2019
11797759907923595519815912 ~2018
11797995871123595991742312 ~2018
11798000378323596000756712 ~2018
11798089379923596178759912 ~2018
11798111093923596222187912 ~2018
11798394131923596788263912 ~2018
11798516761370791100567912 ~2019
11799171947923598343895912 ~2018
11799606145123599212290312 ~2018
11799945857923599891715912 ~2018
11799957961123599915922312 ~2018
11800736701123601473402312 ~2018
11802722510323605445020712 ~2018
11802749657923605499315912 ~2018
11802908725123605817450312 ~2018
11802918665923605837331912 ~2018
11803542482323607084964712 ~2018
11804234240323608468480712 ~2018
Exponent Prime Factor Dig. Year
11804978568170829871408712 ~2019
11805339049123610678098312 ~2018
11805980231370835881387912 ~2019
11806957243123613914486312 ~2018
11809143452323618286904712 ~2018
11809177586323618355172712 ~2018
11809295429923618590859912 ~2018
11810024978323620049956712 ~2018
11810175119370861050715912 ~2019
11810259407923620518815912 ~2018
11810482747123620965494312 ~2018
1181177424014606...53639114 2023
11812986001123625972002312 ~2018
11813216906323626433812712 ~2018
11813416615123626833230312 ~2018
11813470501123626941002312 ~2018
11813904503923627809007912 ~2018
11816143076323632286152712 ~2018
11816330099923632660199912 ~2018
11816477888323632955776712 ~2018
11817544058323635088116712 ~2018
11817772802323635545604712 ~2018
11819167210170915003260712 ~2019
11820248915923640497831912 ~2018
11820505201123641010402312 ~2018
Exponent Prime Factor Dig. Year
11821378709923642757419912 ~2018
11821801833770930811002312 ~2019
11822391989923644783979912 ~2018
1182281580077093...80420114 2025
11823497933923646995867912 ~2018
11824951538323649903076712 ~2018
11824966145923649932291912 ~2018
11825864858323651729716712 ~2018
11828229907123656459814312 ~2018
11828299424323656598848712 ~2018
11830250198323660500396712 ~2018
11830680740323661361480712 ~2018
11831126798323662253596712 ~2018
11832007403923664014807912 ~2018
11833641312171001847872712 ~2019
11833851659923667703319912 ~2018
11835668384323671336768712 ~2018
1183630480992461...00459314 2024
11837119111123674238222312 ~2018
11837490811123674981622312 ~2018
11837886577123675773154312 ~2018
11837935711123675871422312 ~2018
11838585169123677170338312 ~2018
11838890318323677780636712 ~2018
11839527689923679055379912 ~2018
Exponent Prime Factor Dig. Year
11840861843923681723687912 ~2018
11841012917923682025835912 ~2018
11841487940323682975880712 ~2018
11843250167923686500335912 ~2018
11843352554323686705108712 ~2018
1184356304994149...26849715 2025
11843860183371063161099912 ~2019
11844514751923689029503912 ~2018
11844539683123689079366312 ~2018
11844612483771067674902312 ~2019
11845034302171070205812712 ~2019
11845618525123691237050312 ~2018
1184694832432843...97832114 2024
11847264392323694528784712 ~2018
11848475546323696951092712 ~2018
11849272681123698545362312 ~2018
11850884810323701769620712 ~2018
11851961765923703923531912 ~2018
11852116212171112697272712 ~2019
11852724347923705448695912 ~2018
11852959753123705919506312 ~2018
11853534242323707068484712 ~2018
11853675903771122055422312 ~2019
11853852301123707704602312 ~2018
11854704079123709408158312 ~2018
Home
5.142.307 digits
e-mail
25-10-26