Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18058820075936117640151912 ~2019
1805961161091986...77199114 2024
18060872000336121744000712 ~2019
18060982622336121965244712 ~2019
18062965271936125930543912 ~2019
18063130973936126261947912 ~2019
18063545429936127090859912 ~2019
18063639769136127279538312 ~2019
18064014829136128029658312 ~2019
18064421138336128842276712 ~2019
18067408969136134817938312 ~2019
18068001991136136003982312 ~2019
1806854523832746...76221714 2024
18071002430336142004860712 ~2019
18071171509136142343018312 ~2019
18071736035936143472071912 ~2019
18071870021936143740043912 ~2019
18072426494336144852988712 ~2019
18072559208336145118416712 ~2019
1807317954833072...23211114 2024
18074467934336148935868712 ~2019
1807461982672736...17623915 2025
18075323257136150646514312 ~2019
18076201057136152402114312 ~2019
18077921551136155843102312 ~2019
Exponent Prime Factor Dig. Year
18079210292336158420584712 ~2019
18080468687936160937375912 ~2019
18080668058336161336116712 ~2019
18081645085136163290170312 ~2019
18082021826336164043652712 ~2019
18084178820336168357640712 ~2019
18084869243936169738487912 ~2019
18085014179936170028359912 ~2019
18085083353936170166707912 ~2019
1808740369514087...35092714 2023
18088439750336176879500712 ~2019
18088466054336176932108712 ~2019
18090305933936180611867912 ~2019
18091257593936182515187912 ~2019
18092530597136185061194312 ~2019
18094244657936188489315912 ~2019
18096000595136192001190312 ~2019
18096061943936192123887912 ~2019
18099683102336199366204712 ~2019
18100237283936200474567912 ~2019
18104582203136209164406312 ~2019
18104994877136209989754312 ~2019
18106456781936212913563912 ~2019
18108413858336216827716712 ~2019
18108864269936217728539912 ~2019
Exponent Prime Factor Dig. Year
18111010772336222021544712 ~2019
18112865863136225731726312 ~2019
18113424301136226848602312 ~2019
18113873888336227747776712 ~2019
18115168337936230336675912 ~2019
1811578839414492...21736914 2024
18116137507136232275014312 ~2019
18119731409936239462819912 ~2019
18120558791936241117583912 ~2019
18121883785136243767570312 ~2019
1812208165932573...95620714 2024
18122478703136244957406312 ~2019
18124150813136248301626312 ~2019
18124901017136249802034312 ~2019
18127126675136254253350312 ~2019
18131028206336262056412712 ~2019
1813116142912647...68648714 2024
18132869383136265738766312 ~2019
18133108435136266216870312 ~2019
18133682975936267365951912 ~2019
18133693813136267387626312 ~2019
18133709041136267418082312 ~2019
18133855849136267711698312 ~2019
18133901837936267803675912 ~2019
1813439581137979...56972114 2025
Exponent Prime Factor Dig. Year
18136467377936272934755912 ~2019
18137609561936275219123912 ~2019
18138705251936277410503912 ~2019
18140666873936281333747912 ~2019
18142071305936284142611912 ~2019
18142408286336284816572712 ~2019
18143362616336286725232712 ~2019
18146121782336292243564712 ~2019
18149218559936298437119912 ~2019
18150565205936301130411912 ~2019
18150855005936301710011912 ~2019
18151595612336303191224712 ~2019
18152297015936304594031912 ~2019
18152367239936304734479912 ~2019
18152563525136305127050312 ~2019
18153654530336307309060712 ~2019
18154065691136308131382312 ~2019
18155466869936310933739912 ~2019
18155994889136311989778312 ~2019
18156257390336312514780712 ~2019
18156464197136312928394312 ~2019
18156575947136313151894312 ~2019
18156628091936313256183912 ~2019
18160383529136320767058312 ~2019
18162006553136324013106312 ~2019
Home
5.037.460 digits
e-mail
25-09-07