Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17834306845135668613690312 ~2019
17834527633135669055266312 ~2019
17834904893935669809787912 ~2019
17836500797935673001595912 ~2019
17837573738335675147476712 ~2019
17838881179135677762358312 ~2019
17839061549935678123099912 ~2019
17840682467935681364935912 ~2019
17844680713135689361426312 ~2019
17844781349935689562699912 ~2019
17845953938335691907876712 ~2019
17846283905935692567811912 ~2019
17847231311935694462623912 ~2019
17849060605135698121210312 ~2019
17850087037135700174074312 ~2019
17850120956335700241912712 ~2019
17851032121135702064242312 ~2019
17853001982335706003964712 ~2019
17853013685935706027371912 ~2019
17854724183935709448367912 ~2019
17854863500335709727000712 ~2019
17855103821935710207643912 ~2019
17855643917935711287835912 ~2019
17856951251935713902503912 ~2019
17860540723135721081446312 ~2019
Exponent Prime Factor Dig. Year
1786086926238144...83608914 2023
17863964183935727928367912 ~2019
17864009423935728018847912 ~2019
17865232820335730465640712 ~2019
17866217870335732435740712 ~2019
17869477451935738954903912 ~2019
17870522792335741045584712 ~2019
17871232160335742464320712 ~2019
17872284194335744568388712 ~2019
17872598203135745196406312 ~2019
17872773253135745546506312 ~2019
17873373965935746747931912 ~2019
17874055501135748111002312 ~2019
17874857251135749714502312 ~2019
17878731047935757462095912 ~2019
17882514949135765029898312 ~2019
17882771431135765542862312 ~2019
1788296653211112...82966315 2025
17883247439935766494879912 ~2019
17885162681935770325363912 ~2019
17886511730335773023460712 ~2019
17886874123135773748246312 ~2019
17887016551135774033102312 ~2019
17887282409935774564819912 ~2019
17887309094335774618188712 ~2019
Exponent Prime Factor Dig. Year
17887535261935775070523912 ~2019
17888089441135776178882312 ~2019
17889236438335778472876712 ~2019
17890305518335780611036712 ~2019
17890787909935781575819912 ~2019
1789134961916058...10272715 2023
17892288659935784577319912 ~2019
17894531323135789062646312 ~2019
17894773874335789547748712 ~2019
1789731532511364...69212716 2025
17898309877135796619754312 ~2019
17899586131135799172262312 ~2019
17899613843935799227687912 ~2019
17902351274335804702548712 ~2019
17902886375935805772751912 ~2019
17903582699935807165399912 ~2019
17904350327935808700655912 ~2019
17906171743135812343486312 ~2019
17910110930335820221860712 ~2019
1791181247293439...94796914 2024
17912767237135825534474312 ~2019
17915574188335831148376712 ~2019
17915996791135831993582312 ~2019
17916018191935832036383912 ~2019
17918204804335836409608712 ~2019
Exponent Prime Factor Dig. Year
17919597535135839195070312 ~2019
17921855245135843710490312 ~2019
17922766298335845532596712 ~2019
17922941108335845882216712 ~2019
17923576825135847153650312 ~2019
17926323553135852647106312 ~2019
17927801359135855602718312 ~2019
17928729145135857458290312 ~2019
17931014395135862028790312 ~2019
17931690848335863381696712 ~2019
17932011308335864022616712 ~2019
17932523125135865046250312 ~2019
17935089913135870179826312 ~2019
17935367102335870734204712 ~2019
17935609609135871219218312 ~2019
17935977395935871954791912 ~2019
17936374331935872748663912 ~2019
17938103507935876207015912 ~2019
17938349837935876699675912 ~2019
17938432273135876864546312 ~2019
1793874896571693...23620915 2024
17939192939935878385879912 ~2019
17941797791935883595583912 ~2019
17943423595135886847190312 ~2019
17943710581135887421162312 ~2019
Home
5.037.460 digits
e-mail
25-09-07