Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10622031948163732191688712 ~2018
10622879963921245759927912 ~2017
10623096893921246193787912 ~2017
10623892676321247785352712 ~2017
10624418665121248837330312 ~2017
10624952477921249904955912 ~2017
10625098997921250197995912 ~2017
10625525233121251050466312 ~2017
10625561071121251122142312 ~2017
10626520922321253041844712 ~2017
10626748465763760490794312 ~2018
10627214821763763288930312 ~2018
10627380649121254761298312 ~2017
10627913543921255827087912 ~2017
10628285431785026283453712 ~2019
10628441873921256883747912 ~2017
10628829332985030634663312 ~2019
10629499413763776996482312 ~2018
10629625345785037002765712 ~2019
10629818413121259636826312 ~2017
10630202695121260405390312 ~2017
10630792448321261584896712 ~2017
10631351414321262702828712 ~2017
10632006311921264012623912 ~2017
10632341227121264682454312 ~2017
Exponent Prime Factor Dig. Year
10633500401921267000803912 ~2017
10633508507921267017015912 ~2017
10633964657921267929315912 ~2017
10634259575921268519151912 ~2017
10634465479763806792878312 ~2018
10634636023121269272046312 ~2017
10636038457363816230743912 ~2018
10636456522185091652176912 ~2019
10637661163785101289309712 ~2019
10637726726321275453452712 ~2017
10637861879921275723759912 ~2017
10638079238321276158476712 ~2017
10638169895921276339791912 ~2017
10638487877921276975755912 ~2017
10639699976321279399952712 ~2017
10640369945921280739891912 ~2017
10640515619921281031239912 ~2017
10641143015921282286031912 ~2017
10641160543185129284344912 ~2019
1064201106497215...02002314 2025
10642246081121284492162312 ~2017
10643202583121286405166312 ~2017
10643558612321287117224712 ~2017
10643703251921287406503912 ~2017
10644463616321288927232712 ~2017
Exponent Prime Factor Dig. Year
10644741005921289482011912 ~2017
10644782834985158262679312 ~2019
10644842635121289685270312 ~2017
10645184285921290368571912 ~2017
10645412060321290824120712 ~2017
10645607255921291214511912 ~2017
10646438963921292877927912 ~2017
10648464133121296928266312 ~2017
10648645561121297291122312 ~2017
10649703349121299406698312 ~2017
10651226227185209809816912 ~2019
10652185258185217482064912 ~2019
10653028178321306056356712 ~2017
10653168983921306337967912 ~2017
1065378076432039...82870315 2023
10654724953121309449906312 ~2017
10655734343921311468687912 ~2017
10655827031921311654063912 ~2017
10656209300321312418600712 ~2017
10657790017121315580034312 ~2017
10658821019921317642039912 ~2017
10658952059363953712355912 ~2018
10658994563921317989127912 ~2017
10659523052321319046104712 ~2017
10659986315921319972631912 ~2017
Exponent Prime Factor Dig. Year
10660303601921320607203912 ~2017
10660829737121321659474312 ~2017
10660965799121321931598312 ~2017
10661003251363966019507912 ~2018
10663589173121327178346312 ~2017
10663963577921327927155912 ~2017
10664022109121328044218312 ~2017
10664073077363984438463912 ~2018
10664093929121328187858312 ~2017
10664867374185318938992912 ~2019
1066503815217252...43428114 2025
10665310715985322485727312 ~2019
10665491616163992949696712 ~2018
1066573281717359...43799114 2024
10666282439921332564879912 ~2017
10666462261121332924522312 ~2017
10666487531921332975063912 ~2017
10666672031364000032187912 ~2018
10669090251764014541510312 ~2018
10669200925121338401850312 ~2017
10669340424164016042544712 ~2018
10669848087764019088526312 ~2018
10669880072321339760144712 ~2017
10670302651121340605302312 ~2017
10670436536321340873072712 ~2017
Home
5.142.307 digits
e-mail
25-10-26