Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1761403889811514...45236714 2024
17614082093935228164187912 ~2019
17614721531935229443063912 ~2019
17614907459935229814919912 ~2019
17615821763935231643527912 ~2019
17616227834335232455668712 ~2019
17617005967135234011934312 ~2019
17618548151935237096303912 ~2019
17620003238335240006476712 ~2019
17620329235135240658470312 ~2019
1762145931317506...67380714 2025
1762349406497317...57464915 2025
17624960537935249921075912 ~2019
17626295119135252590238312 ~2019
17627247032335254494064712 ~2019
1762786430631124...56102317 2023
17629227223135258454446312 ~2019
17629328365135258656730312 ~2019
17631010196335262020392712 ~2019
17632203685135264407370312 ~2019
1763358122392151...09315914 2024
17633654816335267309632712 ~2019
17636441977135272883954312 ~2019
17636569205935273138411912 ~2019
17637183311935274366623912 ~2019
Exponent Prime Factor Dig. Year
17638770599935277541199912 ~2019
17640074347135280148694312 ~2019
17645277571135290555142312 ~2019
17646659815135293319630312 ~2019
17646998393935293996787912 ~2019
17647426159135294852318312 ~2019
17647739197135295478394312 ~2019
17647772645935295545291912 ~2019
17649024197935298048395912 ~2019
17649142127935298284255912 ~2019
17650802419135301604838312 ~2019
17651272925935302545851912 ~2019
17653401653935306803307912 ~2019
17653631051935307262103912 ~2019
17654058595135308117190312 ~2019
17654635297135309270594312 ~2019
17656246532335312493064712 ~2019
17658052921135316105842312 ~2019
17658484291135316968582312 ~2019
17658671953135317343906312 ~2019
17660025155935320050311912 ~2019
17661587663935323175327912 ~2019
17661800537935323601075912 ~2019
17662227673135324455346312 ~2019
17663107685935326215371912 ~2019
Exponent Prime Factor Dig. Year
17665913875135331827750312 ~2019
17667870176335335740352712 ~2019
17669220395935338440791912 ~2019
17673028225135346056450312 ~2019
17675058626335350117252712 ~2019
17675306389135350612778312 ~2019
17678394086335356788172712 ~2019
17678571872335357143744712 ~2019
17682437185135364874370312 ~2019
17685610739935371221479912 ~2019
17686037363935372074727912 ~2019
17686321063135372642126312 ~2019
17686581941935373163883912 ~2019
17687577121135375154242312 ~2019
17687714455135375428910312 ~2019
17688004601935376009203912 ~2019
17689865456335379730912712 ~2019
17692163203135384326406312 ~2019
17694777014335389554028712 ~2019
17695708057135391416114312 ~2019
17697193823935394387647912 ~2019
17697388877935394777755912 ~2019
17698493113135396986226312 ~2019
17698862618335397725236712 ~2019
17699038562335398077124712 ~2019
Exponent Prime Factor Dig. Year
1769955144892654...17335114 2024
17700982763935401965527912 ~2019
17701802351935403604703912 ~2019
17702092037935404184075912 ~2019
17702449793935404899587912 ~2019
17703315758335406631516712 ~2019
17703528017935407056035912 ~2019
17704172263135408344526312 ~2019
17705398871935410797743912 ~2019
1770651070137790...08572114 2025
17706916502335413833004712 ~2019
17707800584335415601168712 ~2019
17707875746335415751492712 ~2019
17709457079935418914159912 ~2019
17709933353935419866707912 ~2019
1770994497893081...26328714 2024
17713731884335427463768712 ~2019
17715350087935430700175912 ~2019
17716409633935432819267912 ~2019
17717170531135434341062312 ~2019
17719007384335438014768712 ~2019
17719328216335438656432712 ~2019
17720315605135440631210312 ~2019
17720748446335441496892712 ~2019
17722077983935444155967912 ~2019
Home
5.037.460 digits
e-mail
25-09-07