Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16802875187933605750375912 ~2019
1680391221976318...94607314 2024
16804103149133608206298312 ~2019
16805118494333610236988712 ~2019
16805478067133610956134312 ~2019
16806229616333612459232712 ~2019
16806662221133613324442312 ~2019
16808569303133617138606312 ~2019
16809959498333619918996712 ~2019
16810655894333621311788712 ~2019
16812818183933625636367912 ~2019
16812861938333625723876712 ~2019
16814370259133628740518312 ~2019
16814661896333629323792712 ~2019
16816109003933632218007912 ~2019
16816650631133633301262312 ~2019
16817354312333634708624712 ~2019
16818308149133636616298312 ~2019
16819055381933638110763912 ~2019
16819625935133639251870312 ~2019
16819945424333639890848712 ~2019
16820228990333640457980712 ~2019
16823318441933646636883912 ~2019
16826178289133652356578312 ~2019
16826341643933652683287912 ~2019
Exponent Prime Factor Dig. Year
16826927864333653855728712 ~2019
1682739360798783...63323914 2024
16827779003933655558007912 ~2019
16829565161933659130323912 ~2019
16834298011133668596022312 ~2019
16834528955933669057911912 ~2019
1683473355111515...19599114 2024
16837217941133674435882312 ~2019
16837576121933675152243912 ~2019
1683782659071458...27546315 2025
16839375503933678751007912 ~2019
16840222175933680444351912 ~2019
16840397009933680794019912 ~2019
16840670732333681341464712 ~2019
16842948037133685896074312 ~2019
16842991039133685982078312 ~2019
16843184839133686369678312 ~2019
16843779074333687558148712 ~2019
16844059121933688118243912 ~2019
16844185118333688370236712 ~2019
1684477947073941...96143914 2024
16845805142333691610284712 ~2019
16845967160333691934320712 ~2019
1684596997634356...58711915 2023
16846142204333692284408712 ~2019
Exponent Prime Factor Dig. Year
16847550884333695101768712 ~2019
16848129991133696259982312 ~2019
16848805418333697610836712 ~2019
16849006003133698012006312 ~2019
16849639483133699278966312 ~2019
1685059723615762...54746314 2025
16850946391133701892782312 ~2019
16852275161933704550323912 ~2019
16852565753933705131507912 ~2019
16854153206333708306412712 ~2019
16854348989933708697979912 ~2019
16854616136333709232272712 ~2019
16855124990333710249980712 ~2019
16857167395133714334790312 ~2019
1685775707873944...56415914 2024
1685777104493068...30171914 2024
16859394953933718789907912 ~2019
16859438930333718877860712 ~2019
16859618819933719237639912 ~2019
16861648397933723296795912 ~2019
16861780135133723560270312 ~2019
16862269076333724538152712 ~2019
16862354147933724708295912 ~2019
16862836838333725673676712 ~2019
1686427858697555...06931314 2023
Exponent Prime Factor Dig. Year
16865319395933730638791912 ~2019
16865587711133731175422312 ~2019
1686600757195700...59302314 2023
16866225709133732451418312 ~2019
16866338657933732677315912 ~2019
1686792385571315...60744714 2024
16868050331933736100663912 ~2019
16869263645933738527291912 ~2019
16869767090333739534180712 ~2019
16870601462333741202924712 ~2019
16873638881933747277763912 ~2019
1687398313992328...73306314 2024
16874484815933748969631912 ~2019
16874834987933749669975912 ~2019
16876855034333753710068712 ~2019
16877763506333755527012712 ~2019
1687834710611495...36004715 2023
16880332367933760664735912 ~2019
16881172853933762345707912 ~2019
16881321278333762642556712 ~2019
16882598929133765197858312 ~2019
16883086859933766173719912 ~2019
16883697500333767395000712 ~2019
16885865837933771731675912 ~2019
16887401615933774803231912 ~2019
Home
5.037.460 digits
e-mail
25-09-07