Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9527242226319054484452712 ~2017
9527570669919055141339912 ~2017
9528784589919057569179912 ~2017
9529050211757174301270312 ~2018
9530248855176241990840912 ~2018
9530263073919060526147912 ~2017
9530593871919061187743912 ~2017
9530937221919061874443912 ~2017
9531323027919062646055912 ~2017
9531839285919063678571912 ~2017
9532016507919064033015912 ~2017
953213557491317...64511915 2024
9532643318319065286636712 ~2017
9533125922319066251844712 ~2017
9534527521119069055042312 ~2017
9535334363919070668727912 ~2017
9535376315919070752631912 ~2017
9535613050157213678300712 ~2018
9536081732319072163464712 ~2017
9536775583119073551166312 ~2017
9536957917119073915834312 ~2017
9537395306319074790612712 ~2017
9537509948319075019896712 ~2017
9538143685119076287370312 ~2017
9538388648319076777296712 ~2017
Exponent Prime Factor Dig. Year
9539043253119078086506312 ~2017
9539801704176318413632912 ~2018
9539874718176318997744912 ~2018
9540139934319080279868712 ~2017
9540279584319080559168712 ~2017
954093060291908...20580114 2024
9541069801119082139602312 ~2017
9541182133119082364266312 ~2017
9541735813757250414882312 ~2018
9542278445919084556891912 ~2017
9543446605119086893210312 ~2017
9545048680157270292080712 ~2018
9545705891919091411783912 ~2017
9545768700157274612200712 ~2018
9546305774319092611548712 ~2017
9546778063119093556126312 ~2017
9546955178976375641431312 ~2018
9546996534157281979204712 ~2018
9547082311119094164622312 ~2017
9547317392319094634784712 ~2017
9547763902157286583412712 ~2018
9548303696319096607392712 ~2017
9548497592319096995184712 ~2017
9548901510157293409060712 ~2018
9548967895119097935790312 ~2017
Exponent Prime Factor Dig. Year
9549006137919098012275912 ~2017
9549271391357295628347912 ~2018
9549355226319098710452712 ~2017
9549996256776399970053712 ~2018
9550409062157302454372712 ~2018
9550441196319100882392712 ~2017
9550442453919100884907912 ~2017
9550802077119101604154312 ~2017
9550802552319101605104712 ~2017
9550867019919101734039912 ~2017
9551593345119103186690312 ~2017
9552114635919104229271912 ~2017
9553466447919106932895912 ~2017
9553552897119107105794312 ~2017
9553605517119107211034312 ~2017
9554326394319108652788712 ~2017
9554507227757327043366312 ~2018
9554766650319109533300712 ~2017
9555566251119111132502312 ~2017
9556412405919112824811912 ~2017
9556429363357338576179912 ~2018
9557785354157346712124712 ~2018
9557987131119115974262312 ~2017
9558262550319116525100712 ~2017
9558296273357349777639912 ~2018
Exponent Prime Factor Dig. Year
9558690941919117381883912 ~2017
9561275201919122550403912 ~2017
9562817688157376906128712 ~2018
9563061331119126122662312 ~2017
9563537383119127074766312 ~2017
9563788583919127577167912 ~2017
9564034171119128068342312 ~2017
9564519254319129038508712 ~2017
9565223387919130446775912 ~2017
9566046433119132092866312 ~2017
9566579474319133158948712 ~2017
9566707099119133414198312 ~2017
9567049822176536398576912 ~2018
9567846188319135692376712 ~2017
9568185221919136370443912 ~2017
9568475765919136951531912 ~2017
9568799309919137598619912 ~2017
9569543425176556347400912 ~2018
9569693845119139387690312 ~2017
9569740705119139481410312 ~2017
9570010549357420063295912 ~2018
9570424513776563396109712 ~2018
9571302968319142605936712 ~2017
9571920137976575361103312 ~2018
9572764933119145529866312 ~2017
Home
5.142.307 digits
e-mail
25-10-26