Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
29199100892358398201784712 ~2021
29200152131958400304263912 ~2021
2920016161196330...74599315 2025
29200323428358400646856712 ~2021
29201515208358403030416712 ~2021
29203127479158406254958312 ~2021
29205318524358410637048712 ~2021
29209031000358418062000712 ~2021
2921090754833330...60506314 2024
29211826141158423652282312 ~2021
29214640052358429280104712 ~2021
29216676329958433352659912 ~2021
29217276421158434552842312 ~2021
29221993801158443987602312 ~2021
29223593591958447187183912 ~2021
29225170403958450340807912 ~2021
29225613308358451226616712 ~2021
29226339458358452678916712 ~2021
29227098626358454197252712 ~2021
29227767719958455535439912 ~2021
2923381771274502...27755914 2023
29236813969158473627938312 ~2021
29239075058358478150116712 ~2021
29239096700358478193400712 ~2021
29241001187958482002375912 ~2021
Exponent Prime Factor Dig. Year
2924448494533684...03107914 2025
29245884779958491769559912 ~2021
29246776627158493553254312 ~2021
29246880005958493760011912 ~2021
29247438571158494877142312 ~2021
2924909800495323...36891914 2023
29250097253958500194507912 ~2021
29250306077958500612155912 ~2021
2925183045494153...24595914 2024
2925263069211772...99412715 2023
29254658324358509316648712 ~2021
2925583965892984...45207914 2024
29256285011958512570023912 ~2021
29259537359958519074719912 ~2021
29261027635158522055270312 ~2021
2926395480314740...78102314 2024
29264883137958529766275912 ~2021
29266072813158532145626312 ~2021
29266307491158532614982312 ~2021
2926767067692575...19567314 2024
29269023152358538046304712 ~2021
29269873297158539746594312 ~2021
29270650823958541301647912 ~2021
29271248402358542496804712 ~2021
29274638099958549276199912 ~2021
Exponent Prime Factor Dig. Year
29274822200358549644400712 ~2021
29275965389958551930779912 ~2021
29276453951958552907903912 ~2021
29276817419958553634839912 ~2021
29277279857958554559715912 ~2021
29280413933958560827867912 ~2021
29282651167158565302334312 ~2021
29287298906358574597812712 ~2021
29287988443158575976886312 ~2021
29288139523158576279046312 ~2021
29289526562358579053124712 ~2021
29292424091958584848183912 ~2021
29292627815958585255631912 ~2021
29296082785158592165570312 ~2021
29296397756358592795512712 ~2021
2929704666536562...53027314 2025
29297103704358594207408712 ~2021
2929810881734160...52056714 2023
29299885549158599771098312 ~2021
2930123883913105...16944714 2024
29305466519958610933039912 ~2021
29305752445158611504890312 ~2021
29306272555158612545110312 ~2021
29307700801158615401602312 ~2021
29307780617958615561235912 ~2021
Exponent Prime Factor Dig. Year
29308553765958617107531912 ~2021
29310462467958620924935912 ~2021
29310961849158621923698312 ~2021
29312961277158625922554312 ~2021
29313822038358627644076712 ~2021
29314220789958628441579912 ~2021
29315645209158631290418312 ~2021
29316033115158632066230312 ~2021
29316112946358632225892712 ~2021
29320393633158640787266312 ~2021
29320652983158641305966312 ~2021
29322904958358645809916712 ~2021
29328671138358657342276712 ~2021
29328702425958657404851912 ~2021
29329125883158658251766312 ~2021
29334223891158668447782312 ~2021
29340514106358681028212712 ~2021
29340965204358681930408712 ~2021
29341635347958683270695912 ~2021
29343746450358687492900712 ~2021
29344156118358688312236712 ~2021
2934937936793521...24148114 2024
29349567211158699134422312 ~2021
29352293651958704587303912 ~2021
2935475911511409...37524914 2024
Home
4.888.230 digits
e-mail
25-06-29