Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
28663946501957327893003912 ~2021
2866402042098318...61451915 2023
28666715225957333430451912 ~2021
28667879333957335758667912 ~2021
28668704233157337408466312 ~2021
28669221152357338442304712 ~2021
28670210209157340420418312 ~2021
28670266103957340532207912 ~2021
28671589724357343179448712 ~2021
28674042392357348084784712 ~2021
28683136651157366273302312 ~2021
28683147308357366294616712 ~2021
28684487923157368975846312 ~2021
28685716718357371433436712 ~2021
28686211865957372423731912 ~2021
28687262630357374525260712 ~2021
28690697293157381394586312 ~2021
28693555118357387110236712 ~2021
28694649521957389299043912 ~2021
28700131016357400262032712 ~2021
28700634935957401269871912 ~2021
2870174594473042...70138314 2024
28702448486357404896972712 ~2021
28705229077157410458154312 ~2021
28707011221157414022442312 ~2021
Exponent Prime Factor Dig. Year
28708142713157416285426312 ~2021
28708936874357417873748712 ~2021
2870938284474823...17909714 2024
28711034653157422069306312 ~2021
28712938933157425877866312 ~2021
28713482797157426965594312 ~2021
28714749127157429498254312 ~2021
2871522888112762...83618315 2023
28715667695957431335391912 ~2021
28715847721157431695442312 ~2021
28716612044357433224088712 ~2021
28718383646357436767292712 ~2021
2871974682792355...39887914 2024
28721208716357442417432712 ~2021
2872342467971321...35266314 2024
2872431728171258...69384715 2023
28724801144357449602288712 ~2021
28725147299957450294599912 ~2021
28738063681157476127362312 ~2021
2874750028633909...38936914 2024
28747713137957495426275912 ~2021
28751937901157503875802312 ~2021
28752165133157504330266312 ~2021
28752294170357504588340712 ~2021
28753186661957506373323912 ~2021
Exponent Prime Factor Dig. Year
28754645078357509290156712 ~2021
28761967487957523934975912 ~2021
2876262834535925...39131914 2023
28763351669957526703339912 ~2021
28763541661157527083322312 ~2021
28763986322357527972644712 ~2021
28764115997957528231995912 ~2021
2876507088231438...44115114 2024
28765177961957530355923912 ~2021
28766154308357532308616712 ~2021
28769247566357538495132712 ~2021
28770315461957540630923912 ~2021
28776900011957553800023912 ~2021
2877722747991594...23864715 2025
28779257453957558514907912 ~2021
28779435371957558870743912 ~2021
28781622992357563245984712 ~2021
28782848540357565697080712 ~2021
28789610504357579221008712 ~2021
28793706305957587412611912 ~2021
28798570135157597140270312 ~2021
28800980216357601960432712 ~2021
28803733553957607467107912 ~2021
2880395897031901...92039914 2024
2880550182131860...76559915 2023
Exponent Prime Factor Dig. Year
28807056179957614112359912 ~2021
2881103908198124...21095914 2023
28812964598357625929196712 ~2021
2881341727514667...98566314 2023
2881508795515071...80097714 2024
28816948280357633896560712 ~2021
2881959320412559...65240915 2025
28819779031157639558062312 ~2021
28821644573957643289147912 ~2021
2882208101212478...67040714 2024
2883022034171055...45062315 2023
28836500297957673000595912 ~2021
28839601694357679203388712 ~2021
28841432663957682865327912 ~2021
28843001918357686003836712 ~2021
28846558616357693117232712 ~2021
28847153923157694307846312 ~2021
28847835625157695671250312 ~2021
28848000038357696000076712 ~2021
28848455011157696910022312 ~2021
28849803865157699607730312 ~2021
28851249758357702499516712 ~2021
28853064830357706129660712 ~2021
28856637257957713274515912 ~2021
28858017719957716035439912 ~2021
Home
4.888.230 digits
e-mail
25-06-29