Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6747229855740483379134312 ~2017
6747706229340486237375912 ~2017
6747819959913495639919912 ~2016
6748273687740489642126312 ~2017
6749114240313498228480712 ~2016
6749134813153993078504912 ~2017
6749392481913498784963912 ~2016
6749702954313499405908712 ~2016
6749710290140498261740712 ~2017
6750123025740500738154312 ~2017
6750186110313500372220712 ~2016
6750209851113500419702312 ~2016
6750246722313500493444712 ~2016
6750464219954003713759312 ~2017
6750682261154005458088912 ~2017
6750900536313501801072712 ~2016
6751073029113502146058312 ~2016
6751106425113502212850312 ~2016
6751333436313502666872712 ~2016
6752435349740514612098312 ~2017
6753528671913507057343912 ~2016
6753778353167537783531112 ~2017
6753895005740523370034312 ~2017
6753995885340523975311912 ~2017
6754317913113508635826312 ~2016
Exponent Prime Factor Dig. Year
675436770315981...78653715 2024
6754644000140527864000712 ~2017
6755987419113511974838312 ~2016
6756086945913512173891912 ~2016
6756157567113512315134312 ~2016
6756666271113513332542312 ~2016
6756785834313513571668712 ~2016
6757161361113514322722312 ~2016
6757249088313514498176712 ~2016
6757352160140544112960712 ~2017
6757895573913515791147912 ~2016
6757920800313515841600712 ~2016
6758245895913516491791912 ~2016
6758464453113516928906312 ~2016
6758610304154068882432912 ~2017
6758654995113517309990312 ~2016
6759084085113518168170312 ~2016
6759196543113518393086312 ~2016
6759628395740557770374312 ~2017
6759675859113519351718312 ~2016
6760186201740561117210312 ~2017
6760260577113520521154312 ~2016
6760640431113521280862312 ~2016
6761092283913522184567912 ~2016
6761104250313522208500712 ~2016
Exponent Prime Factor Dig. Year
6761461724313522923448712 ~2016
6761726401754093811213712 ~2017
6762163295913524326591912 ~2016
6762165865113524331730312 ~2016
6762231664754097853317712 ~2017
6762399638313524799276712 ~2016
6762700389740576202338312 ~2017
6762964465113525928930312 ~2016
6763153481913526306963912 ~2016
6763851008313527702016712 ~2016
6764262810140585576860712 ~2017
6764740823913529481647912 ~2016
6764944231340589665387912 ~2017
6765149183913530298367912 ~2016
6765348815913530697631912 ~2016
6765478663113530957326312 ~2016
6765574519113531149038312 ~2016
6766260551913532521103912 ~2016
6767171692367671716923112 ~2017
6767549099913535098199912 ~2016
6768448670313536897340712 ~2016
6769107659913538215319912 ~2016
6769406780313538813560712 ~2016
6769564865913539129731912 ~2016
6769610765913539221531912 ~2016
Exponent Prime Factor Dig. Year
6770018473113540036946312 ~2016
6770103961113540207922312 ~2016
6770139881913540279763912 ~2016
6771136411754169091293712 ~2017
6771187919913542375839912 ~2016
6771282685113542565370312 ~2016
6771312625113542625250312 ~2016
6771745757913543491515912 ~2016
6771849647913543699295912 ~2016
6771994010313543988020712 ~2016
6772123675340632742051912 ~2017
6772498744140634992464712 ~2017
6772522466313545044932712 ~2016
6772717421913545434843912 ~2016
6773080528140638483168712 ~2017
6773571481113547142962312 ~2016
6773768689740642612138312 ~2017
6773833788140643002728712 ~2017
6774285769113548571538312 ~2016
6774523073913549046147912 ~2016
6774708634754197669077712 ~2017
6775009418313550018836712 ~2016
6775177433913550354867912 ~2016
6775273982313550547964712 ~2016
6775502519913551005039912 ~2016
Home
5.142.307 digits
e-mail
25-10-26