Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6451768133912903536267912 ~2015
6451931200138711587200712 ~2017
6452400713912904801427912 ~2015
6452656279112905312558312 ~2015
6453292724312906585448712 ~2015
6453531611912907063223912 ~2015
6453580672364535806723112 ~2017
6453841703912907683407912 ~2015
6454058606312908117212712 ~2015
6454138136312908276272712 ~2015
645415189391110...57508115 2025
6454158464312908316928712 ~2015
6454876082312909752164712 ~2015
6455174431112910348862312 ~2015
6455201581338731209487912 ~2017
6456049567338736297403912 ~2017
6456407713112912815426312 ~2015
6456654459738739926758312 ~2017
6456869341112913738682312 ~2015
6456874555751654996445712 ~2017
6457313384312914626768712 ~2015
6457357803738744146822312 ~2017
6457451136138744706816712 ~2017
6457662995912915325991912 ~2015
6458315426312916630852712 ~2015
Exponent Prime Factor Dig. Year
6458329508312916659016712 ~2015
6459107011112918214022312 ~2015
6459622018151676976144912 ~2017
6459627560312919255120712 ~2015
6459662503112919325006312 ~2015
645971316191019...69478315 2024
6460611690764606116907112 ~2017
6461348704751690789637712 ~2017
6461361683912922723367912 ~2015
6461383531112922767062312 ~2015
6461432168312922864336712 ~2015
6461526287912923052575912 ~2015
6461619683912923239367912 ~2015
6461832995912923665991912 ~2015
6462056408312924112816712 ~2015
6462640512764626405127112 ~2017
6462643010312925286020712 ~2015
6462756449912925512899912 ~2015
6462830089738776980538312 ~2017
6462904478312925808956712 ~2015
6462993517112925987034312 ~2015
6463891133912927782267912 ~2015
646401289792288...65856714 2023
6464161397912928322795912 ~2015
6464179513112928359026312 ~2015
Exponent Prime Factor Dig. Year
6464409359338786456155912 ~2017
6464990719751719925757712 ~2017
6465303308312930606616712 ~2015
6465350783912930701567912 ~2015
6465851009912931702019912 ~2015
6465892934312931785868712 ~2015
6466144448312932288896712 ~2015
6466165105112932330210312 ~2015
6466845749912933691499912 ~2015
6468379682312936759364712 ~2015
6468860413112937720826312 ~2015
6468923981912937847963912 ~2015
6469160456312938320912712 ~2015
6469250947112938501894312 ~2015
6469270649338815623895912 ~2017
6469311253112938622506312 ~2015
6469340233738816041402312 ~2017
6470079173338820475039912 ~2017
6470493247338822959483912 ~2017
6470497303751763978429712 ~2017
6470593970312941187940712 ~2015
6471032791112942065582312 ~2015
6471039133112942078266312 ~2015
6471192074312942384148712 ~2015
647184717432124...26052715 2025
Exponent Prime Factor Dig. Year
6471923071338831538427912 ~2017
6472222321112944444642312 ~2015
6472503185912945006371912 ~2015
6472564207112945128414312 ~2015
6472650860312945301720712 ~2015
6472690243112945380486312 ~2015
6473254753112946509506312 ~2015
6473397563912946795127912 ~2015
6473899849112947799698312 ~2015
6474068072312948136144712 ~2015
6474088616312948177232712 ~2015
6474210698312948421396712 ~2015
6474882847112949765694312 ~2015
6475144411112950288822312 ~2015
6476230717112952461434312 ~2015
6476498767112952997534312 ~2015
6477275389112954550778312 ~2015
6477284503738863707022312 ~2017
6477875939912955751879912 ~2015
6478147519112956295038312 ~2015
647826469277152...20740914 2025
6478331639912956663279912 ~2015
6478703111912957406223912 ~2015
6478903619912957807239912 ~2015
6478951508312957903016712 ~2015
Home
5.142.307 digits
e-mail
25-10-26