Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
19073986825138147973650312 ~2019
19075768051138151536102312 ~2019
19075775663938151551327912 ~2019
1907596642432899...96493714 2024
19076847047938153694095912 ~2019
19078388173138156776346312 ~2019
19078881191938157762383912 ~2019
19079128733938158257467912 ~2019
19079137321138158274642312 ~2019
19079700746338159401492712 ~2019
19082318882338164637764712 ~2019
19082846609938165693219912 ~2019
19084068185938168136371912 ~2019
19084765999138169531998312 ~2019
19085909681938171819363912 ~2019
19087028642338174057284712 ~2019
19087462487938174924975912 ~2019
19092273554338184547108712 ~2019
19092915551938185831103912 ~2019
19093559177938187118355912 ~2019
19093750832338187501664712 ~2019
19095229285138190458570312 ~2019
1909602573773819...47540114 2024
19097701760338195403520712 ~2019
19100455913938200911827912 ~2019
Exponent Prime Factor Dig. Year
19101848930338203697860712 ~2019
19102296835138204593670312 ~2019
19103835098338207670196712 ~2019
19104347597938208695195912 ~2019
19104350917138208701834312 ~2019
19107174517138214349034312 ~2019
19107375559138214751118312 ~2019
19108613851138217227702312 ~2019
19110206681938220413363912 ~2019
19110624247138221248494312 ~2019
19111559048338223118096712 ~2019
19112717297938225434595912 ~2019
19113231506338226463012712 ~2019
19113358321138226716642312 ~2019
19113861959938227723919912 ~2019
19114443079138228886158312 ~2019
19118567738338237135476712 ~2019
19118739488338237478976712 ~2019
19120573061938241146123912 ~2019
19125414038338250828076712 ~2019
19127388041938254776083912 ~2019
19132606361938265212723912 ~2019
19133707013938267414027912 ~2019
19135416365938270832731912 ~2019
19135495865938270991731912 ~2019
Exponent Prime Factor Dig. Year
19135743167938271486335912 ~2019
19135789703938271579407912 ~2019
19137757675138275515350312 ~2019
19138917143938277834287912 ~2019
19140777314338281554628712 ~2019
19143744254338287488508712 ~2019
19144214117938288428235912 ~2019
19146131450338292262900712 ~2019
19150608547138301217094312 ~2019
19156842709138313685418312 ~2019
19157555324338315110648712 ~2019
19157589272338315178544712 ~2019
19160564921938321129843912 ~2019
19161503042338323006084712 ~2019
19161938696338323877392712 ~2019
19164979831138329959662312 ~2019
19165132583938330265167912 ~2019
19166231204338332462408712 ~2019
19166372045938332744091912 ~2019
1916721666291820...29755115 2025
19167479941138334959882312 ~2019
19168140050338336280100712 ~2019
19169612354338339224708712 ~2019
19169901115138339802230312 ~2019
19171825373938343650747912 ~2019
Exponent Prime Factor Dig. Year
19171839416338343678832712 ~2019
1917319821735943...47363114 2023
19173931304338347862608712 ~2019
19176371363938352742727912 ~2019
19178996222338357992444712 ~2019
19179811757938359623515912 ~2019
19180016696338360033392712 ~2019
1918011026291496...00506314 2024
19184363882338368727764712 ~2019
19187052395938374104791912 ~2019
19188866894338377733788712 ~2019
19190980232338381960464712 ~2019
19191246524338382493048712 ~2019
19192158905938384317811912 ~2019
19192478669938384957339912 ~2019
19192496791138384993582312 ~2019
19194050828338388101656712 ~2019
1919464171273570...58562314 2024
19195473473938390946947912 ~2019
19196858432338393716864712 ~2019
1919745151791443...41460915 2025
19199800028338399600056712 ~2019
1920206626331152...57980115 2025
19202957641138405915282312 ~2019
19207230785938414461571912 ~2019
Home
4.888.230 digits
e-mail
25-06-29