Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1857231065993603...68020714 2024
1857270490493380...92691914 2024
1857518476512972...62416114 2024
18575727715137151455430312 ~2019
18575746514337151493028712 ~2019
1857745940812244...64984915 2024
18577766852337155533704712 ~2019
18578208655137156417310312 ~2019
18578849729937157699459912 ~2019
18581294456337162588912712 ~2019
18583352630337166705260712 ~2019
1858400700491449...46382314 2024
18584143811937168287623912 ~2019
18586035859137172071718312 ~2019
18587862581937175725163912 ~2019
18589507481937179014963912 ~2019
18590008865937180017731912 ~2019
18590774792337181549584712 ~2019
18594295075137188590150312 ~2019
18599214728337198429456712 ~2019
18599823247137199646494312 ~2019
18600210917937200421835912 ~2019
18601784570337203569140712 ~2019
18602337602337204675204712 ~2019
18603394423137206788846312 ~2019
Exponent Prime Factor Dig. Year
18605181319137210362638312 ~2019
18608132621937216265243912 ~2019
18609789893937219579787912 ~2019
18609952141137219904282312 ~2019
18610537421937221074843912 ~2019
18610787774337221575548712 ~2019
18611266885137222533770312 ~2019
18612342638337224685276712 ~2019
18613387544337226775088712 ~2019
18614042219937228084439912 ~2019
18615606440337231212880712 ~2019
18617596790337235193580712 ~2019
18619572071937239144143912 ~2019
18622545740337245091480712 ~2019
18623343482337246686964712 ~2019
18623673512337247347024712 ~2019
1862609467571069...43851915 2025
18626158763937252317527912 ~2019
18627119513937254239027912 ~2019
1862715033077003...24343314 2023
1862788414813874...02804914 2024
18628785320337257570640712 ~2019
18632659760337265319520712 ~2019
18634527818337269055636712 ~2019
18635161304337270322608712 ~2019
Exponent Prime Factor Dig. Year
18637155503937274311007912 ~2019
18638185253937276370507912 ~2019
18639339254337278678508712 ~2019
18639570752337279141504712 ~2019
18640157641137280315282312 ~2019
18640913827137281827654312 ~2019
18641755853937283511707912 ~2019
18643505263137287010526312 ~2019
18643997323137287994646312 ~2019
18644666906337289333812712 ~2019
18646350247137292700494312 ~2019
18647732192337295464384712 ~2019
18649014029937298028059912 ~2019
18649549529937299099059912 ~2019
18653857633137307715266312 ~2019
18654264074337308528148712 ~2019
18654490361937308980723912 ~2019
18662125553937324251107912 ~2019
18662919475137325838950312 ~2019
18663794869137327589738312 ~2019
18666357518337332715036712 ~2019
18667747934337335495868712 ~2019
18670944845937341889691912 ~2019
18672171143937344342287912 ~2019
18672465007137344930014312 ~2019
Exponent Prime Factor Dig. Year
18672951905937345903811912 ~2019
18674270851137348541702312 ~2019
1867450695592278...48619914 2024
18677249989137354499978312 ~2019
18679546985937359093971912 ~2019
18679680011937359360023912 ~2019
18679990880337359981760712 ~2019
18681289871937362579743912 ~2019
18681527576337363055152712 ~2019
18681570011937363140023912 ~2019
18681948608337363897216712 ~2019
18684464995137368929990312 ~2019
18685006723137370013446312 ~2019
18685277000337370554000712 ~2019
18686322434337372644868712 ~2019
18688017937137376035874312 ~2019
18688760687937377521375912 ~2019
18689342273937378684547912 ~2019
18689581292337379162584712 ~2019
18690412061937380824123912 ~2019
18696492326337392984652712 ~2019
18697017787137394035574312 ~2019
18698424503937396849007912 ~2019
18698457788337396915576712 ~2019
18700392199137400784398312 ~2019
Home
4.888.230 digits
e-mail
25-06-29