Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17636441977135272883954312 ~2019
17636569205935273138411912 ~2019
17638770599935277541199912 ~2019
17640074347135280148694312 ~2019
17645277571135290555142312 ~2019
17646659815135293319630312 ~2019
17646998393935293996787912 ~2019
17647426159135294852318312 ~2019
17647739197135295478394312 ~2019
17647772645935295545291912 ~2019
17649024197935298048395912 ~2019
17649142127935298284255912 ~2019
17650802419135301604838312 ~2019
17651272925935302545851912 ~2019
17653401653935306803307912 ~2019
17654058595135308117190312 ~2019
17654635297135309270594312 ~2019
17656246532335312493064712 ~2019
17658052921135316105842312 ~2019
17658484291135316968582312 ~2019
17658671953135317343906312 ~2019
17660025155935320050311912 ~2019
17661800537935323601075912 ~2019
17662227673135324455346312 ~2019
17663107685935326215371912 ~2019
Exponent Prime Factor Dig. Year
17665913875135331827750312 ~2019
17667870176335335740352712 ~2019
17673028225135346056450312 ~2019
17675058626335350117252712 ~2019
17675306389135350612778312 ~2019
17678394086335356788172712 ~2019
17678571872335357143744712 ~2019
17682437185135364874370312 ~2019
17685610739935371221479912 ~2019
17686321063135372642126312 ~2019
17686581941935373163883912 ~2019
17687577121135375154242312 ~2019
17687714455135375428910312 ~2019
17688004601935376009203912 ~2019
17689865456335379730912712 ~2019
17692163203135384326406312 ~2019
17695708057135391416114312 ~2019
17697193823935394387647912 ~2019
17697388877935394777755912 ~2019
17698493113135396986226312 ~2019
17698862618335397725236712 ~2019
17699038562335398077124712 ~2019
1769955144892654...17335114 2024
17700982763935401965527912 ~2019
17701802351935403604703912 ~2019
Exponent Prime Factor Dig. Year
17702092037935404184075912 ~2019
17702449793935404899587912 ~2019
17703528017935407056035912 ~2019
17704172263135408344526312 ~2019
17705398871935410797743912 ~2019
1770651070137790...08572114 2025
17706916502335413833004712 ~2019
17707800584335415601168712 ~2019
17707875746335415751492712 ~2019
17709457079935418914159912 ~2019
17709933353935419866707912 ~2019
1770994497893081...26328714 2024
17713731884335427463768712 ~2019
17715350087935430700175912 ~2019
17716409633935432819267912 ~2019
17717170531135434341062312 ~2019
17719007384335438014768712 ~2019
17719328216335438656432712 ~2019
17720315605135440631210312 ~2019
17720748446335441496892712 ~2019
1772245646411219...47300915 2025
17723414123935446828247912 ~2019
17725456457935450912915912 ~2019
17727782858335455565716712 ~2019
17728027163935456054327912 ~2019
Exponent Prime Factor Dig. Year
17729112979135458225958312 ~2019
17730815227135461630454312 ~2019
17731402207135462804414312 ~2019
17731627099135463254198312 ~2019
17734778084335469556168712 ~2019
17734856330335469712660712 ~2019
17735271721135470543442312 ~2019
17735600083135471200166312 ~2019
17736774817135473549634312 ~2019
17738375753935476751507912 ~2019
17738884280335477768560712 ~2019
17739128575135478257150312 ~2019
17739665557135479331114312 ~2019
17742225709135484451418312 ~2019
17747577353935495154707912 ~2019
17748258767935496517535912 ~2019
17750841620335501683240712 ~2019
17756385335935512770671912 ~2019
17756848393135513696786312 ~2019
17757134369935514268739912 ~2019
17757147353935514294707912 ~2019
1775718039493267...92661714 2024
17757990557935515981115912 ~2019
17758748903935517497807912 ~2019
17759014772335518029544712 ~2019
Home
4.888.230 digits
e-mail
25-06-29