Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15871379498331742758996712 ~2018
15871498801131742997602312 ~2018
15872013989931744027979912 ~2018
15873110897931746221795912 ~2018
15873351697131746703394312 ~2018
15874512241131749024482312 ~2018
15874941413931749882827912 ~2018
1587735468711247...84060715 2023
15877444754331754889508712 ~2018
15878175577131756351154312 ~2018
15880697365131761394730312 ~2018
15881137196331762274392712 ~2018
15882085951131764171902312 ~2018
15882502784331765005568712 ~2018
15882954560331765909120712 ~2018
15884100143931768200287912 ~2018
15884210960331768421920712 ~2018
15884864216331769728432712 ~2018
15885632570331771265140712 ~2018
15886882202331773764404712 ~2018
15888314213931776628427912 ~2018
15888384743931776769487912 ~2018
15889794167931779588335912 ~2018
15890421566331780843132712 ~2018
15890698736331781397472712 ~2018
Exponent Prime Factor Dig. Year
15891342235131782684470312 ~2018
15892297115931784594231912 ~2018
15893414567931786829135912 ~2019
15893477005131786954010312 ~2019
1589409732073592...94478314 2023
15895294897131790589794312 ~2019
15898346732331796693464712 ~2019
15899663078331799326156712 ~2019
1590151143674452...02276114 2025
15902365370331804730740712 ~2019
15903427262331806854524712 ~2019
15904566602331809133204712 ~2019
15905484637131810969274312 ~2019
15907920119931815840239912 ~2019
15908547325131817094650312 ~2019
15909253733931818507467912 ~2019
15909482771931818965543912 ~2019
15912756590331825513180712 ~2019
15913348796331826697592712 ~2019
15913997371131827994742312 ~2019
15914327539131828655078312 ~2019
15914595499131829190998312 ~2019
15915057137931830114275912 ~2019
15918057685131836115370312 ~2019
15918363763131836727526312 ~2019
Exponent Prime Factor Dig. Year
15920135597931840271195912 ~2019
15920549492331841098984712 ~2019
15922999111131845998222312 ~2019
15923098403931846196807912 ~2019
15924048311931848096623912 ~2019
15924737642331849475284712 ~2019
15927061895931854123791912 ~2019
15928240889931856481779912 ~2019
15928619651931857239303912 ~2019
15928768082331857536164712 ~2019
15930319574331860639148712 ~2019
1593133019113823...45864114 2023
15931720153131863440306312 ~2019
15933490280331866980560712 ~2019
15935722352331871444704712 ~2019
15936601465131873202930312 ~2019
15937048541931874097083912 ~2019
1593907548475100...55104114 2023
15939371474331878742948712 ~2019
15940708052331881416104712 ~2019
15941675729931883351459912 ~2019
15942485813931884971627912 ~2019
15942555326331885110652712 ~2019
15944448542331888897084712 ~2019
15945208808331890417616712 ~2019
Exponent Prime Factor Dig. Year
15945720025131891440050312 ~2019
15947257501131894515002312 ~2019
15947262569931894525139912 ~2019
15948547087131897094174312 ~2019
1594945272111435...44899114 2024
15949755557931899511115912 ~2019
15949936439931899872879912 ~2019
15950292415131900584830312 ~2019
15950929538331901859076712 ~2019
15952060765131904121530312 ~2019
1595338805771222...52198315 2023
15953481205131906962410312 ~2019
15954279541131908559082312 ~2019
15955765352331911530704712 ~2019
15958358879931916717759912 ~2019
1595904097573415...68799914 2023
15959895755931919791511912 ~2019
15961314655131922629310312 ~2019
15962548327131925096654312 ~2019
15962662541931925325083912 ~2019
1596416902939450...65345714 2025
1596585330591660...43813714 2024
15966815605131933631210312 ~2019
15968361944331936723888712 ~2019
1596956566932564...64895915 2023
Home
4.873.271 digits
e-mail
25-06-22